Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 60748 by ajfour last updated on 25/May/19

Commented by ajfour last updated on 25/May/19

Determine r(θ).

$${Determine}\:{r}\left(\theta\right). \\ $$

Answered by ajfour last updated on 25/May/19

Commented by ajfour last updated on 05/Jun/19

mgrcos θ=(d/dt)(mr^2 ω)        .....(i)  Mg−T=M((d^2 r/dt^2 ))         ....(ii)  T−mgsin θ=m((d^2 r/dt^2 ))+((mv^2 )/r)     ...(iii)  mgcos θ=((mdv)/dt)         ....(iv)  From energy conservation,  2mgrsin θ=mv^2 +(M+m)ω^2 ((dr/dθ))^2                                           .....(I)  Adding  (ii) & (iii) and using (I)  Mg−mgsin θ=(M+m)(d^2 r/dt^2 )+              2mgsin θ−(((M+m)ω^2 )/r)((dr/dθ))^2   ⇒ (M+m)ω^2 ((d^2 r/dθ^2 ))−(((M+m)ω^2 )/r)((dr/dθ))^2                        =(M−3m)gsin θ  And  from (i)      grcos θ = ((ωd(ωr^2 ))/dθ)         ____________________  let   ((M−3m)/(M+m))=μ  , then         ((rd^2 r)/dθ^2 )−((dr/dθ))^2 =((μgrsin θ)/ω^2 )  And    g∫_0 ^( θ) r^3 cos θdθ =(((ωr^2 )^2 )/2)  ⇒   ω^2 =((2g∫_0 ^( θ) r^3 cos θdθ)/r^4 )  Now        2{∫_0 ^( θ) r^3 cos θdθ}{((rd^2 r)/dθ^2 )−((dr/dθ))^2 }                       =μr^5 sin θ      Solving this differential eq.  should give  r(θ).

$${mgr}\mathrm{cos}\:\theta=\frac{{d}}{{dt}}\left({mr}^{\mathrm{2}} \omega\right)\:\:\:\:\:\:\:\:.....\left({i}\right) \\ $$$${Mg}−{T}={M}\left(\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }\right)\:\:\:\:\:\:\:\:\:....\left({ii}\right) \\ $$$${T}−{mg}\mathrm{sin}\:\theta={m}\left(\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }\right)+\frac{{mv}^{\mathrm{2}} }{{r}}\:\:\:\:\:...\left({iii}\right) \\ $$$${mg}\mathrm{cos}\:\theta=\frac{{mdv}}{{dt}}\:\:\:\:\:\:\:\:\:....\left({iv}\right) \\ $$$${From}\:{energy}\:{conservation}, \\ $$$$\mathrm{2}{mgr}\mathrm{sin}\:\theta={mv}^{\mathrm{2}} +\left({M}+{m}\right)\omega^{\mathrm{2}} \left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\left({I}\right) \\ $$$${Adding}\:\:\left({ii}\right)\:\&\:\left({iii}\right)\:{and}\:{using}\:\left({I}\right) \\ $$$${Mg}−{mg}\mathrm{sin}\:\theta=\left({M}+{m}\right)\frac{{d}^{\mathrm{2}} {r}}{{dt}^{\mathrm{2}} }+ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}{mg}\mathrm{sin}\:\theta−\frac{\left({M}+{m}\right)\omega^{\mathrm{2}} }{{r}}\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\left({M}+{m}\right)\omega^{\mathrm{2}} \left(\frac{{d}^{\mathrm{2}} {r}}{{d}\theta^{\mathrm{2}} }\right)−\frac{\left({M}+{m}\right)\omega^{\mathrm{2}} }{{r}}\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({M}−\mathrm{3}{m}\right){g}\mathrm{sin}\:\theta \\ $$$${And}\:\:{from}\:\left({i}\right) \\ $$$$\:\:\:\:{gr}\mathrm{cos}\:\theta\:=\:\frac{\omega{d}\left(\omega{r}^{\mathrm{2}} \right)}{{d}\theta} \\ $$$$\:\:\:\:\:\:\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${let}\:\:\:\frac{{M}−\mathrm{3}{m}}{{M}+{m}}=\mu\:\:,\:{then} \\ $$$$\:\:\:\:\:\:\:\frac{{rd}^{\mathrm{2}} {r}}{{d}\theta^{\mathrm{2}} }−\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} =\frac{\mu{gr}\mathrm{sin}\:\theta}{\omega^{\mathrm{2}} } \\ $$$${And}\:\:\:\:{g}\int_{\mathrm{0}} ^{\:\theta} {r}^{\mathrm{3}} \mathrm{cos}\:\theta{d}\theta\:=\frac{\left(\omega{r}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\omega^{\mathrm{2}} =\frac{\mathrm{2}{g}\int_{\mathrm{0}} ^{\:\theta} {r}^{\mathrm{3}} \mathrm{cos}\:\theta{d}\theta}{{r}^{\mathrm{4}} } \\ $$$${Now} \\ $$$$\:\:\:\:\:\:\mathrm{2}\left\{\int_{\mathrm{0}} ^{\:\theta} {r}^{\mathrm{3}} \mathrm{cos}\:\theta{d}\theta\right\}\left\{\frac{{rd}^{\mathrm{2}} {r}}{{d}\theta^{\mathrm{2}} }−\left(\frac{{dr}}{{d}\theta}\right)^{\mathrm{2}} \right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mu{r}^{\mathrm{5}} \mathrm{sin}\:\theta \\ $$$$\:\:\:\:{Solving}\:{this}\:{differential}\:{eq}. \\ $$$${should}\:{give}\:\:{r}\left(\theta\right).\: \\ $$

Commented by mr W last updated on 26/May/19

really not easy question sir!  i′m not sure if the system has an  unique defined motion...

$${really}\:{not}\:{easy}\:{question}\:{sir}! \\ $$$${i}'{m}\:{not}\:{sure}\:{if}\:{the}\:{system}\:{has}\:{an} \\ $$$${unique}\:{defined}\:{motion}... \\ $$

Commented by ajfour last updated on 26/May/19

not an easy one, i agree, but  motion got to be uniquely defined,  i believe..!

$${not}\:{an}\:{easy}\:{one},\:{i}\:{agree},\:{but} \\ $$$${motion}\:{got}\:{to}\:{be}\:{uniquely}\:{defined}, \\ $$$${i}\:{believe}..! \\ $$

Commented by ajfour last updated on 05/Jun/19

mrW Sir, does it seem alright  so far ?

$${mrW}\:{Sir},\:{does}\:{it}\:{seem}\:{alright} \\ $$$${so}\:{far}\:? \\ $$

Commented by mr W last updated on 05/Jun/19

i need some time to go through.

$${i}\:{need}\:{some}\:{time}\:{to}\:{go}\:{through}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com