Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 60788 by ajfour last updated on 25/May/19

Commented by ajfour last updated on 25/May/19

In terms of α and ellipse parameters  a and b, find maximum colored area.

Intermsofαandellipseparametersaandb,findmaximumcoloredarea.

Answered by mr W last updated on 27/May/19

α in diagram will be replaced by ∅.  let μ=(a/b)≥1  (x^2 /a^2 )+(y^2 /b^2 )=1  ((r^2 cos^2  θ)/a^2 )+((r^2 sin^2  θ)/b^2 )=1  ⇒r^2 =((a^2 b^2 )/(a^2 sin^2  θ+b^2 cos^2  θ))  ((2x)/a^2 )+((2yy′)/b^2 )=0  ((r cos θ)/a^2 )+((r sin θy′)/b^2 )=0  ⇒y′=tan ϕ=−(a^2 /(b^2  tan θ))=−(μ^2 /(tan θ))  at A: r_A , θ_A =α, ϕ_A   at B: r_B , θ_A =β, ϕ_B   tan ϕ_A =−(a^2 /(b^2  tan α))  tan ϕ_B =−(a^2 /(b^2  tan β))    ∅=ϕ_A −ϕ_B   tan ∅=tan (ϕ_A −ϕ_B )=((−(a^2 /(b^2 tan α))+(a^2 /(b^2 tan β)))/(1+(a^4 /(b^4 tan α tan β))))  ⇒tan ∅=((a/b))^2 ((tan α−tan β)/(((a/b))^4 +tan α tan β))  ⇒tan ∅=μ^2 ((tan α−tan β)/(μ^4 +tan α tan β))    A=shaded area  A=∫_θ_A  ^θ_B  ((r^2 dθ)/2)−((r_A r_B sin (θ_B −θ_A ))/2)  A=(1/2)∫_α ^β ((a^2 b^2  dθ)/(a^2 sin^2  θ+b^2 cos^2  θ))−((sin (β−α))/2)(√(((a^2 b^2 )/(a^2 sin^2  α+b^2 cos^2  α))×((a^2 b^2 )/(a^2 sin^2  β+b^2 cos^2  β))))  A=((a^2 b^2 )/2)∫_α ^β (dθ/(a^2 sin^2  θ+b^2 cos^2  θ))−((a^2 b^2 sin (β−α))/2)(√(1/((a^2 sin^2  α+b^2 cos^2  α)(a^2 sin^2  β+b^2 cos^2  β))))  A=((ab)/2)[tan^(−1) (((a tan β)/b))−tan^(−1) (((a tan α)/b))]−((a^2 b^2 sin (β−α))/(2b^2 ))(√(1/((μ^2 sin^2  α+cos^2  α)(μ^2 sin^2  β+cos^2  β))))  A=((ab)/2)[tan^(−1) (μ tan β)−tan^(−1) (μ tan α)]−((μ sin (β−α))/2)(√(1/((μ^2  sin^2  α+cos^2  α)(μ^2 sin^2  β+cos^2  β))))  A=((ab)/2){[tan^(−1) (μ tan β)−tan^(−1) (μ tan α)]−((μ sin (β−α))/(√((μ^2  sin^2  α+cos^2  α)(μ^2 sin^2  β+cos^2  β))))}  =((ab)/2)×f  ⇒f=tan^(−1) (μ tan β)−tan^(−1) (μ tan α)−((μ sin (β−α))/(√((μ^2  sin^2  α+cos^2  α)(μ^2 sin^2  β+cos^2  β))))  ⇒f=tan^(−1) [((μ(tan β−tan α) )/(1+μ^2  tan β tan α))]−((μ(tan β−tan α))/(√((1+μ^2  tan^2  α)(1+μ^2 tan^2  β))))  let p=μ tan α, q=μ tan β  ⇒f=tan^(−1) (((q−p)/(1+qp)))−((q−p)/(√((p^2  +1)(q^2 +1))))   ...(i)  tan ∅=μ^3 ×((μ tan α−μ tan β)/(μ^6 +μ^2  tan α tan β))  ((tan ∅)/μ^3 )=((p−q)/(μ^6 +pq ))  tan ∅ μ^6 +tan ∅ pq=μ^3 p−μ^3 q  ⇒q=((μ^3 (p−μ^3 tan ∅))/(μ^3 +p tan ∅))   ...(ii)

αindiagramwillbereplacedby.letμ=ab1x2a2+y2b2=1r2cos2θa2+r2sin2θb2=1r2=a2b2a2sin2θ+b2cos2θ2xa2+2yyb2=0rcosθa2+rsinθyb2=0y=tanφ=a2b2tanθ=μ2tanθatA:rA,θA=α,φAatB:rB,θA=β,φBtanφA=a2b2tanαtanφB=a2b2tanβ=φAφBtan=tan(φAφB)=a2b2tanα+a2b2tanβ1+a4b4tanαtanβtan=(ab)2tanαtanβ(ab)4+tanαtanβtan=μ2tanαtanβμ4+tanαtanβA=shadedareaA=θAθBr2dθ2rArBsin(θBθA)2A=12αβa2b2dθa2sin2θ+b2cos2θsin(βα)2a2b2a2sin2α+b2cos2α×a2b2a2sin2β+b2cos2βA=a2b22αβdθa2sin2θ+b2cos2θa2b2sin(βα)21(a2sin2α+b2cos2α)(a2sin2β+b2cos2β)A=ab2[tan1(atanβb)tan1(atanαb)]a2b2sin(βα)2b21(μ2sin2α+cos2α)(μ2sin2β+cos2β)A=ab2[tan1(μtanβ)tan1(μtanα)]μsin(βα)21(μ2sin2α+cos2α)(μ2sin2β+cos2β)A=ab2{[tan1(μtanβ)tan1(μtanα)]μsin(βα)(μ2sin2α+cos2α)(μ2sin2β+cos2β)}=ab2×ff=tan1(μtanβ)tan1(μtanα)μsin(βα)(μ2sin2α+cos2α)(μ2sin2β+cos2β)f=tan1[μ(tanβtanα)1+μ2tanβtanα]μ(tanβtanα)(1+μ2tan2α)(1+μ2tan2β)letp=μtanα,q=μtanβf=tan1(qp1+qp)qp(p2+1)(q2+1)...(i)tan=μ3×μtanαμtanβμ6+μ2tanαtanβtanμ3=pqμ6+pqtanμ6+tanpq=μ3pμ3qq=μ3(pμ3tan)μ3+ptan...(ii)

Commented by ajfour last updated on 27/May/19

Thanks so much Sir, let me  some time to follow it determinedly!

ThankssomuchSir,letmesometimetofollowitdeterminedly!

Commented by mr W last updated on 27/May/19

Answered by ajfour last updated on 27/May/19

r=((ab)/(√(a^2 sin^2 θ+b^2 cos^2 θ)))  A=∫_δ ^( δ+ξ)  ((r^2 dθ)/2)−(1/2)r_A r_B sin ξ  ((xcos δ)/a)+((ysin δ)/b)=1  ⇒ m_A =−(b/(atan δ))  m_B =−(b/(atan (δ+ξ)))  tan α=((−(b/a)[(1/(tan δ))−(1/(tan (δ+ξ)))])/(1+(b^2 /(a^2 tan δtan (δ+ξ)))))  ⇒ a^2 tan αtan δtan (δ+ξ)+b^2 tan α        = ab[tan (δ+ξ)−tan δ]  ⇒ tan (δ+ξ)=(b/a)(((btan α+atan δ)/(b−atan αtan δ)))  ξ(δ)=tan^(−1) {(b/a)(((btan α+atan δ)/(b−atan αtan δ)))}−δ  A=∫_δ ^( δ+ξ(δ))  ((r^2 dθ)/2)−(1/2)r_δ r_(δ+ξ(δ)) sin ξ(δ)  (dA/dδ)=0   should yield a suitable 𝛅.

r=aba2sin2θ+b2cos2θA=δδ+ξr2dθ212rArBsinξxcosδa+ysinδb=1mA=batanδmB=batan(δ+ξ)tanα=ba[1tanδ1tan(δ+ξ)]1+b2a2tanδtan(δ+ξ)a2tanαtanδtan(δ+ξ)+b2tanα=ab[tan(δ+ξ)tanδ]tan(δ+ξ)=ba(btanα+atanδbatanαtanδ)ξ(δ)=tan1{ba(btanα+atanδbatanαtanδ)}δA=δδ+ξ(δ)r2dθ212rδrδ+ξ(δ)sinξ(δ)dAdδ=0shouldyieldasuitableδ.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com