Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 6081 by LMTV last updated on 12/Jun/16

∫e^(−st) (t^n /(n!))dt=?

$$\int{e}^{−{st}} \frac{{t}^{{n}} }{{n}!}{dt}=? \\ $$

Commented by Yozzii last updated on 12/Jun/16

Let I(n)=(1/(n!))∫e^(−st) t^n dt  (n≥0).  Let u=st⇒du=sdt⇒(1/s)du=dt.  ∴I(n)=(1/(n!))∫e^(−u) ((u/s))^n ×(1/s)du  I(n)=(1/(n!(s)^(n+1) ))(∫e^(−u) u^n du)  See Qu. 6042 for the proof that  ∫e^(−u) u^n du=D−n!e^(−u) (Σ_(r=0) ^n (u^(n−r) /((n−r)!)))  where D is a term dependent on n  but independent of u. In particular  D=n!C where C is a constant.  ∴I(n)=(1/(n!(s)^(n+1) ))(n!C−n!e^(−u) Σ_(r=0) ^n (u^(n−r) /((n−r)!)))  I(n)=(C/((s)^(n+1) ))−(e^(−u) /((s)^(n+1) ))Σ_(r=0) ^n ((u^(n−r) /((n−r)!)))  I(n)=J−(e^(−st) /s^(n+1) )Σ_(r=0) ^n (((st)^(n−r) )/((n−r)!))   (s≠0)  (1/(n!))∫e^(−st) t^n dt=J−e^(−st) (Σ_(r=0) ^n ((s^(−1−r) t^(n−r) )/((n−r)!)))  where J=(C/s^(n+1) ) is independent of t.

$${Let}\:{I}\left({n}\right)=\frac{\mathrm{1}}{{n}!}\int{e}^{−{st}} {t}^{{n}} {dt}\:\:\left({n}\geqslant\mathrm{0}\right). \\ $$$${Let}\:{u}={st}\Rightarrow{du}={sdt}\Rightarrow\frac{\mathrm{1}}{{s}}{du}={dt}. \\ $$$$\therefore{I}\left({n}\right)=\frac{\mathrm{1}}{{n}!}\int{e}^{−{u}} \left(\frac{{u}}{{s}}\right)^{{n}} ×\frac{\mathrm{1}}{{s}}{du} \\ $$$${I}\left({n}\right)=\frac{\mathrm{1}}{{n}!\left({s}\right)^{{n}+\mathrm{1}} }\left(\int{e}^{−{u}} {u}^{{n}} {du}\right) \\ $$$${See}\:{Qu}.\:\mathrm{6042}\:{for}\:{the}\:{proof}\:{that} \\ $$$$\int{e}^{−{u}} {u}^{{n}} {du}={D}−{n}!{e}^{−{u}} \left(\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{u}^{{n}−{r}} }{\left({n}−{r}\right)!}\right) \\ $$$${where}\:{D}\:{is}\:{a}\:{term}\:{dependent}\:{on}\:{n} \\ $$$${but}\:{independent}\:{of}\:{u}.\:{In}\:{particular} \\ $$$${D}={n}!{C}\:{where}\:{C}\:{is}\:{a}\:{constant}. \\ $$$$\therefore{I}\left({n}\right)=\frac{\mathrm{1}}{{n}!\left({s}\right)^{{n}+\mathrm{1}} }\left({n}!{C}−{n}!{e}^{−{u}} \underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{u}^{{n}−{r}} }{\left({n}−{r}\right)!}\right) \\ $$$${I}\left({n}\right)=\frac{{C}}{\left({s}\right)^{{n}+\mathrm{1}} }−\frac{{e}^{−{u}} }{\left({s}\right)^{{n}+\mathrm{1}} }\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\left(\frac{{u}^{{n}−{r}} }{\left({n}−{r}\right)!}\right) \\ $$$${I}\left({n}\right)={J}−\frac{{e}^{−{st}} }{{s}^{{n}+\mathrm{1}} }\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\left({st}\right)^{{n}−{r}} }{\left({n}−{r}\right)!}\:\:\:\left({s}\neq\mathrm{0}\right) \\ $$$$\frac{\mathrm{1}}{{n}!}\int{e}^{−{st}} {t}^{{n}} {dt}={J}−{e}^{−{st}} \left(\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{s}^{−\mathrm{1}−{r}} {t}^{{n}−{r}} }{\left({n}−{r}\right)!}\right) \\ $$$${where}\:{J}=\frac{{C}}{{s}^{{n}+\mathrm{1}} }\:{is}\:{independent}\:{of}\:{t}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com