Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 60812 by peter frank last updated on 26/May/19

Commented by tanmay last updated on 26/May/19

area of BCADB=2×(1/2)×5×12=60  60=2[(1/2)×13×h]  h=((60)/(13))  sinθ_1 =(h/(12))   and sinθ_2 =(h/5)  sinθ_1 =((60)/(13×12))=(5/(13))   sinθ_2 =((12)/(13))  area of triangle △BCD=(1/2)×CD×BO  =(1/2)×2h×12cosθ_1    [cosθ_1 =((BO)/(12))]  =((60)/(13))×12×((12)/(13))=60×(((12)/(13)))^2   area of trisngle △CAD=(1/2)×CD×AO  =(1/2)×2h×5cosθ_2   [cosθ_2 =((AO)/5)]  =((60)/(13))×5×(5/(13))=60×((5/(13)))^2   area of sector=((πr^2 )/(2π))×θ=(1/2)r^2 θ  here one sector area=(1/2)×12^2 ×2θ_1 =  another sector area=(1/2)×5^2 ×2θ_2   shaded area=[12^2 θ_1 +5^2 θ_2 ]−[60×(((12)/(13)))^2 +60×((5/(13)))^2 ]  =144sin^(−1) ((5/(13)))+25sin^(−1) (((12)/(13)))−60

areaofBCADB=2×12×5×12=6060=2[12×13×h]h=6013sinθ1=h12andsinθ2=h5sinθ1=6013×12=513sinθ2=1213areaoftriangleBCD=12×CD×BO=12×2h×12cosθ1[cosθ1=BO12]=6013×12×1213=60×(1213)2areaoftrisngleCAD=12×CD×AO=12×2h×5cosθ2[cosθ2=AO5]=6013×5×513=60×(513)2areaofsector=πr22π×θ=12r2θhereonesectorarea=12×122×2θ1=anothersectorarea=12×52×2θ2shadedarea=[122θ1+52θ2][60×(1213)2+60×(513)2]=144sin1(513)+25sin1(1213)60

Commented by peter frank last updated on 26/May/19

find area of shaded region

findareaofshadedregion

Commented by tanmay last updated on 26/May/19

Commented by peter frank last updated on 26/May/19

thank you sir

thankyousir

Commented by tanmay last updated on 26/May/19

most welcme...

mostwelcme...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com