Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 60817 by ANTARES VY last updated on 26/May/19

V=(4/3)𝛑R^3    prove

$$\boldsymbol{\mathrm{V}}=\frac{\mathrm{4}}{\mathrm{3}}\boldsymbol{\pi\mathrm{R}}^{\mathrm{3}} \:\:\:\boldsymbol{\mathrm{prove}} \\ $$

Commented by Prithwish sen last updated on 26/May/19

http://mathcentral.uregina.ca/QQ/database/QQ.09.01/rahul1.html

Commented by Prithwish sen last updated on 26/May/19

This explanation is geometry based.

$$\mathrm{This}\:\mathrm{explanation}\:\mathrm{is}\:\mathrm{geometry}\:\mathrm{based}. \\ $$

Answered by ajfour last updated on 26/May/19

Commented by ajfour last updated on 26/May/19

  An intermediate differential  layer has volume  dV = 4πr^2 dr  ⇒  V=∫_0 ^(  R) 4πr^2 dr = ((4πR^3 )/3) .

$$\:\:{An}\:{intermediate}\:{differential} \\ $$$${layer}\:{has}\:{volume}\:\:{dV}\:=\:\mathrm{4}\pi{r}^{\mathrm{2}} {dr} \\ $$$$\Rightarrow\:\:{V}=\int_{\mathrm{0}} ^{\:\:{R}} \mathrm{4}\pi{r}^{\mathrm{2}} {dr}\:=\:\frac{\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}}\:. \\ $$

Commented by mr W last updated on 26/May/19

or  the surface can be divided into infinite  small pieces, each piece is the base of  a pyramid whose top is the center of  the sphere. the volume of the pyramid  is  ΔV=((hΔS)/3) with h=R  the volume of the sphere is  V=ΣΔV=(h/3)ΣΔS  ⇒V=(h/3)S=((h4πR^2 )/3)=((4πR^3 )/3)

$${or} \\ $$$${the}\:{surface}\:{can}\:{be}\:{divided}\:{into}\:{infinite} \\ $$$${small}\:{pieces},\:{each}\:{piece}\:{is}\:{the}\:{base}\:{of} \\ $$$${a}\:{pyramid}\:{whose}\:{top}\:{is}\:{the}\:{center}\:{of} \\ $$$${the}\:{sphere}.\:{the}\:{volume}\:{of}\:{the}\:{pyramid} \\ $$$${is} \\ $$$$\Delta{V}=\frac{{h}\Delta{S}}{\mathrm{3}}\:{with}\:{h}={R} \\ $$$${the}\:{volume}\:{of}\:{the}\:{sphere}\:{is} \\ $$$${V}=\Sigma\Delta{V}=\frac{{h}}{\mathrm{3}}\Sigma\Delta{S} \\ $$$$\Rightarrow{V}=\frac{{h}}{\mathrm{3}}{S}=\frac{{h}\mathrm{4}\pi{R}^{\mathrm{2}} }{\mathrm{3}}=\frac{\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}} \\ $$

Commented by mr W last updated on 26/May/19

Answered by tanmay last updated on 26/May/19

Commented by tanmay last updated on 26/May/19

dv=(rdθ)×(rsinθdφ)×(dr)  V=∫_0 ^R r^2 dr∫_0 ^π sinθdθ∫_0 ^(2π) dφ  =(R^3 /3)×2×2π  =(4/3)πR^3

$${dv}=\left({rd}\theta\right)×\left({rsin}\theta{d}\phi\right)×\left({dr}\right) \\ $$$${V}=\int_{\mathrm{0}} ^{{R}} {r}^{\mathrm{2}} {dr}\int_{\mathrm{0}} ^{\pi} {sin}\theta{d}\theta\int_{\mathrm{0}} ^{\mathrm{2}\pi} {d}\phi \\ $$$$=\frac{{R}^{\mathrm{3}} }{\mathrm{3}}×\mathrm{2}×\mathrm{2}\pi \\ $$$$=\frac{\mathrm{4}}{\mathrm{3}}\pi{R}^{\mathrm{3}} \\ $$

Answered by Kunal12588 last updated on 26/May/19

there is a brilliant way I want to share

$${there}\:{is}\:{a}\:{brilliant}\:{way}\:{I}\:{want}\:{to}\:{share} \\ $$

Commented by Kunal12588 last updated on 26/May/19

Commented by Kunal12588 last updated on 26/May/19

Commented by Prithwish sen last updated on 26/May/19

which book ? Sir.

$$\mathrm{which}\:\mathrm{book}\:?\:\mathrm{Sir}. \\ $$

Commented by Kunal12588 last updated on 26/May/19

Precalculus Mathematics

$${Precalculus}\:{Mathematics} \\ $$

Commented by Prithwish sen last updated on 26/May/19

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by tanmay last updated on 26/May/19

eqn of sphere centre origin(0,0,0) and radius R  (x^2 /R^2 )+(y^2 /R^2 )+(z^2 /R^2 )=1  u_1 =((x/R))^2 →x=R×u_1 ^(1/2) →dx=(R/2)×u^((−1)/2) du_1 =(R/2)×u_1 ^((1/2)−1) du_1   dy=(R/2)×u_2 ^((1/2)−1) du_2   dz=(R/2)×u_3 ^((1/2)−1) du_3   volume of sphere =8∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ((R/2))^3 u_1 ^((1/2)−1) u_2 ^((1/2)−1) u_3 ^((1/2)−1) du_1 du_2 du_3   =8×(R^3 /8)×((⌈((1/2))×⌈((1/2))×⌈((1/2)))/(⌈(1+(1/2)+(1/2)+(1/2))))  =R^3 ×((((√π) )^3 )/(⌈((3/2)+1)))=((π(√π) )/((3/4)(√π)))×R^3 =((4πR^3 )/3)  using Dirchhilet theorem...attaching them    note below  ⌈((3/2)+1)=(3/2)⌈((1/2)+1)=(3/2)×(1/2)⌈((1/2))=(3/4)×(√π)

$${eqn}\:{of}\:{sphere}\:{centre}\:{origin}\left(\mathrm{0},\mathrm{0},\mathrm{0}\right)\:{and}\:{radius}\:{R} \\ $$$$\frac{{x}^{\mathrm{2}} }{{R}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{R}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{{R}^{\mathrm{2}} }=\mathrm{1} \\ $$$${u}_{\mathrm{1}} =\left(\frac{{x}}{{R}}\right)^{\mathrm{2}} \rightarrow{x}={R}×{u}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}} \rightarrow{dx}=\frac{{R}}{\mathrm{2}}×{u}^{\frac{−\mathrm{1}}{\mathrm{2}}} {du}_{\mathrm{1}} =\frac{{R}}{\mathrm{2}}×{u}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {du}_{\mathrm{1}} \\ $$$${dy}=\frac{{R}}{\mathrm{2}}×{u}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {du}_{\mathrm{2}} \\ $$$${dz}=\frac{{R}}{\mathrm{2}}×{u}_{\mathrm{3}} ^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {du}_{\mathrm{3}} \\ $$$${volume}\:{of}\:{sphere}\:=\mathrm{8}\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{{R}}{\mathrm{2}}\right)^{\mathrm{3}} {u}_{\mathrm{1}} ^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {u}_{\mathrm{2}} ^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {u}_{\mathrm{3}} ^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {du}_{\mathrm{1}} {du}_{\mathrm{2}} {du}_{\mathrm{3}} \\ $$$$=\mathrm{8}×\frac{{R}^{\mathrm{3}} }{\mathrm{8}}×\frac{\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)×\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)×\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\lceil\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$={R}^{\mathrm{3}} ×\frac{\left(\sqrt{\pi}\:\right)^{\mathrm{3}} }{\lceil\left(\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{1}\right)}=\frac{\pi\sqrt{\pi}\:}{\frac{\mathrm{3}}{\mathrm{4}}\sqrt{\pi}}×{R}^{\mathrm{3}} =\frac{\mathrm{4}\pi{R}^{\mathrm{3}} }{\mathrm{3}} \\ $$$${using}\:{Dirchhilet}\:{theorem}...{attaching}\:{them} \\ $$$$ \\ $$$${note}\:{below} \\ $$$$\lceil\left(\frac{\mathrm{3}}{\mathrm{2}}+\mathrm{1}\right)=\frac{\mathrm{3}}{\mathrm{2}}\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right)=\frac{\mathrm{3}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}\lceil\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{3}}{\mathrm{4}}×\sqrt{\pi}\: \\ $$$$ \\ $$

Commented by tanmay last updated on 26/May/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com