Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 60854 by Askash last updated on 26/May/19

(x^4 −3x^2 +2x+1)/(x−1)

$$\left({x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}\right)/\left({x}−\mathrm{1}\right) \\ $$$$ \\ $$$$ \\ $$

Commented by Askash last updated on 26/May/19

i want the best method.

$${i}\:{want}\:{the}\:{best}\:{method}. \\ $$

Commented by maxmathsup by imad last updated on 26/May/19

let  p(x) =x^4 −3x^2  +2x +1    the best method is to divide p(x)by x−1  (using pp operation)  let use another method  we have deg(x−1)=1 ⇒  p(x)=(x−1)(x^3  +ax^2  +bx +c) +d    d=p(1) =1−3+2+1 =1 ⇒  p(x) =(x−1)(x^3  +ax^2  +bx +c) +1 ⇒  x^4  +ax^3  +bx^2  +cx −x^3 −ax^2 −bx−c +1 =x^4 −3x^2  +2x+1 ⇒  (a−1)x^3  +(b−a)x^2  +(c−b)x −c =−3x^2  +2x ⇒  a−1 =0   and  b−a =−3  and  c−b =2 ⇒a =1  ,b =−2  ,c=0 ⇒  Q(x) =x^3  +x^2 −2x   and  R =1

$${let}\:\:{p}\left({x}\right)\:={x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{2}{x}\:+\mathrm{1}\:\:\:\:{the}\:{best}\:{method}\:{is}\:{to}\:{divide}\:{p}\left({x}\right){by}\:{x}−\mathrm{1} \\ $$$$\left({using}\:{pp}\:{operation}\right)\:\:{let}\:{use}\:{another}\:{method}\:\:{we}\:{have}\:{deg}\left({x}−\mathrm{1}\right)=\mathrm{1}\:\Rightarrow \\ $$$${p}\left({x}\right)=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{3}} \:+{ax}^{\mathrm{2}} \:+{bx}\:+{c}\right)\:+{d}\:\:\:\:{d}={p}\left(\mathrm{1}\right)\:=\mathrm{1}−\mathrm{3}+\mathrm{2}+\mathrm{1}\:=\mathrm{1}\:\Rightarrow \\ $$$${p}\left({x}\right)\:=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{3}} \:+{ax}^{\mathrm{2}} \:+{bx}\:+{c}\right)\:+\mathrm{1}\:\Rightarrow \\ $$$${x}^{\mathrm{4}} \:+{ax}^{\mathrm{3}} \:+{bx}^{\mathrm{2}} \:+{cx}\:−{x}^{\mathrm{3}} −{ax}^{\mathrm{2}} −{bx}−{c}\:+\mathrm{1}\:={x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{2}{x}+\mathrm{1}\:\Rightarrow \\ $$$$\left({a}−\mathrm{1}\right){x}^{\mathrm{3}} \:+\left({b}−{a}\right){x}^{\mathrm{2}} \:+\left({c}−{b}\right){x}\:−{c}\:=−\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{2}{x}\:\Rightarrow \\ $$$${a}−\mathrm{1}\:=\mathrm{0}\:\:\:{and}\:\:{b}−{a}\:=−\mathrm{3}\:\:{and}\:\:{c}−{b}\:=\mathrm{2}\:\Rightarrow{a}\:=\mathrm{1}\:\:,{b}\:=−\mathrm{2}\:\:,{c}=\mathrm{0}\:\Rightarrow \\ $$$${Q}\left({x}\right)\:={x}^{\mathrm{3}} \:+{x}^{\mathrm{2}} −\mathrm{2}{x}\:\:\:{and}\:\:{R}\:=\mathrm{1} \\ $$$$ \\ $$

Commented by Tawa1 last updated on 26/May/19

   let    x − 1  =  0,          ⇒  x = 1      So, by remainder theorem          f(x)  =  x^4  − 3x^2  + 2x + 1          f(1)  =  1^4  − 3(1)^2  + 2(1) + 1          f(1)  =  1 − 3 + 2 + 1          f(1)  =  1  So, the remainder is 1.

$$\:\:\:\mathrm{let}\:\:\:\:\mathrm{x}\:−\:\mathrm{1}\:\:=\:\:\mathrm{0},\:\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\mathrm{x}\:=\:\mathrm{1}\:\:\:\: \\ $$$$\mathrm{So},\:\mathrm{by}\:\mathrm{remainder}\:\mathrm{theorem} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:\:=\:\:\mathrm{x}^{\mathrm{4}} \:−\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{2x}\:+\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{1}\right)\:\:=\:\:\mathrm{1}^{\mathrm{4}} \:−\:\mathrm{3}\left(\mathrm{1}\right)^{\mathrm{2}} \:+\:\mathrm{2}\left(\mathrm{1}\right)\:+\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{1}\right)\:\:=\:\:\mathrm{1}\:−\:\mathrm{3}\:+\:\mathrm{2}\:+\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{1}\right)\:\:=\:\:\mathrm{1} \\ $$$$\mathrm{So},\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{1}. \\ $$

Commented by Askash last updated on 26/May/19

any easy to find remainder

$${any}\:{easy}\:{to}\:{find}\:{remainder} \\ $$

Answered by ajfour last updated on 26/May/19

let x−1=t    ⇒   x=t+1  ,then  {(t+1)^4 −3(t+1)^2 +2(t+1)+1}/t  =(t^4 +4t^3 +6t^2 +4t+1−3t^2 −6t−3      +2t+2+1)/t  =t^3 +4t^2 +3t+(1/t)  = (x−1){(x−1)^2 +4(x−1)+3}+(1/(x−1))  =x(x−1)(x+2)+(1/(x−1)) .

$${let}\:{x}−\mathrm{1}={t}\:\:\:\:\Rightarrow\:\:\:{x}={t}+\mathrm{1}\:\:,{then} \\ $$$$\left\{\left({t}+\mathrm{1}\right)^{\mathrm{4}} −\mathrm{3}\left({t}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}\left({t}+\mathrm{1}\right)+\mathrm{1}\right\}/{t} \\ $$$$=\left({t}^{\mathrm{4}} +\mathrm{4}{t}^{\mathrm{3}} +\mathrm{6}{t}^{\mathrm{2}} +\mathrm{4}{t}+\mathrm{1}−\mathrm{3}{t}^{\mathrm{2}} −\mathrm{6}{t}−\mathrm{3}\right. \\ $$$$\left.\:\:\:\:+\mathrm{2}{t}+\mathrm{2}+\mathrm{1}\right)/{t} \\ $$$$={t}^{\mathrm{3}} +\mathrm{4}{t}^{\mathrm{2}} +\mathrm{3}{t}+\frac{\mathrm{1}}{{t}} \\ $$$$=\:\left({x}−\mathrm{1}\right)\left\{\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}\left({x}−\mathrm{1}\right)+\mathrm{3}\right\}+\frac{\mathrm{1}}{{x}−\mathrm{1}} \\ $$$$={x}\left({x}−\mathrm{1}\right)\left({x}+\mathrm{2}\right)+\frac{\mathrm{1}}{{x}−\mathrm{1}}\:. \\ $$

Answered by Rasheed.Sindhi last updated on 26/May/19

Synthetic Division is perhaps the  easiest way when  divisor is linear  as in this case.  P(x)=x^4 +0x^3 −3x^2 +2x+1  D(x)=x−1  Q(x):Quotient∫  R: Remainder   (((1)),1,0,(−3),(    2),1),(,,1,(    1),(−2),0),(,−,−,−,−,−),(,1,1,(−2),(     0),([1)) )  Q(x)=x^3 +x^2 −2x ,  R=1

$${Synthetic}\:{Division}\:{is}\:{perhaps}\:{the} \\ $$$${easiest}\:{way}\:{when}\:\:{divisor}\:{is}\:{linear} \\ $$$${as}\:{in}\:{this}\:{case}. \\ $$$${P}\left({x}\right)={x}^{\mathrm{4}} +\mathrm{0}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1} \\ $$$${D}\left({x}\right)={x}−\mathrm{1} \\ $$$${Q}\left({x}\right):{Quotient}\int \\ $$$${R}:\:{Remainder} \\ $$$$\begin{pmatrix}{\left.\mathrm{1}\right)}&{\mathrm{1}}&{\mathrm{0}}&{−\mathrm{3}}&{\:\:\:\:\mathrm{2}}&{\mathrm{1}}\\{}&{}&{\mathrm{1}}&{\:\:\:\:\mathrm{1}}&{−\mathrm{2}}&{\mathrm{0}}\\{}&{−}&{−}&{−}&{−}&{−}\\{}&{\mathrm{1}}&{\mathrm{1}}&{−\mathrm{2}}&{\:\:\:\:\:\mathrm{0}}&{\left[\mathrm{1}\right.}\end{pmatrix} \\ $$$${Q}\left({x}\right)={x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{2}{x}\:,\:\:{R}=\mathrm{1} \\ $$

Commented by malwaan last updated on 26/May/19

yes mr Rasheed  fast and easy  thank you

$${yes}\:{mr}\:{Rasheed} \\ $$$${fast}\:{and}\:{easy} \\ $$$${thank}\:{you} \\ $$

Commented by Rasheed.Sindhi last updated on 27/May/19

You′re welcome sir!

$${You}'{re}\:{welcome}\:{sir}! \\ $$

Commented by Rasheed.Sindhi last updated on 27/May/19

This is also an easy way to evaluate  polynomial P(x) at x=a i-e P(a).

$${This}\:{is}\:{also}\:{an}\:{easy}\:{way}\:{to}\:{evaluate} \\ $$$${polynomial}\:{P}\left({x}\right)\:{at}\:{x}={a}\:{i}-{e}\:{P}\left({a}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com