All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60881 by aliesam last updated on 26/May/19
∫π−πsin(11−x2)dx
Commented by MJS last updated on 26/May/19
Idon′tthinkwecansolvethis,notevenapproximate.it′sundefinedatx=±1andit′soszillatingveryfastaroundthesevaluesofx∫π−πsin11−x2dx=2∫π0sin11−x2dx
Commented by aliesam last updated on 26/May/19
yesthat′srightandiposteditbecauseitisimproperintegrals
Commented by maxmathsup by imad last updated on 27/May/19
letI=∫−ππsin(11−x2)dx⇒2I=∫0πsin(11−x2)dx=∫01sin(11−x2)dx+∫1πsin(11−x2)dx=H+KH=x=sinθ∫0π2sin(1cos2θ)cosθdθwehavex−x36⩽sinx⩽x⇒1cos2θ−16cos6θ⩽sin(1cos2θ)⩽1cos2θ⇒∫0π2cosθsin(1cos2θ)dθ⩾∫0π2dθcosθ−16∫0π2dθcos5θlettake∫0π2dθcosθ∫0π2dθcosθ=tan(θ2)=u∫012du(1+u2)1−u21+u2=∫012du1−u2=∫01(11+u+11−u)du=[ln∣1+u1−u∣]01=∞sothisintegraldiverge...dontwastetimetofindit...!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com