Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60881 by aliesam last updated on 26/May/19

∫_(−π) ^π sin((1/(1−x^2 ))) dx

ππsin(11x2)dx

Commented by MJS last updated on 26/May/19

I don′t think we can solve this, not even  approximate. it′s undefined at x=±1 and  it′s oszillating very fast around these values  of x  ∫_(−π) ^π sin (1/(1−x^2 )) dx=2∫_0 ^π sin (1/(1−x^2 )) dx

Idontthinkwecansolvethis,notevenapproximate.itsundefinedatx=±1anditsoszillatingveryfastaroundthesevaluesofxππsin11x2dx=2π0sin11x2dx

Commented by aliesam last updated on 26/May/19

yes that′s right and i posted it because it is improper integrals

yesthatsrightandiposteditbecauseitisimproperintegrals

Commented by maxmathsup by imad last updated on 27/May/19

let I =∫_(−π) ^π   sin((1/(1−x^2 )))dx ⇒2I =∫_0 ^π  sin((1/(1−x^2 )))dx  =∫_0 ^1  sin((1/(1−x^2 )))dx  +∫_1 ^π  sin((1/(1−x^2 )))dx =H +K  H =_(x =sinθ)    ∫_0 ^(π/2)  sin((1/(cos^2 θ)))cosθ dθ    we have x−(x^3 /6) ≤sinx≤x ⇒  (1/(cos^2 θ)) −(1/(6cos^6 θ)) ≤ sin((1/(cos^2 θ))) ≤(1/(cos^2 θ)) ⇒ ∫_0 ^(π/2)  cosθ sin((1/(cos^2 θ)))dθ   ≥ ∫_0 ^(π/2)   (dθ/(cosθ)) −(1/6) ∫_0 ^(π/2)    (dθ/(cos^5 θ))   let take ∫_0 ^(π/2)  (dθ/(cosθ))  ∫_0 ^(π/2)   (dθ/(cosθ)) =_(tan((θ/2)) =u)     ∫_0 ^1     ((2du)/((1+u^2 )((1−u^2 )/(1+u^2 )))) =∫_0 ^1  ((2du)/(1−u^2 ))  =∫_0 ^1  ((1/(1+u)) +(1/(1−u)))du =[ln∣((1+u)/(1−u))∣]_0 ^1  =∞   so this integral diverge  ...dont  waste time to find it...!

letI=ππsin(11x2)dx2I=0πsin(11x2)dx=01sin(11x2)dx+1πsin(11x2)dx=H+KH=x=sinθ0π2sin(1cos2θ)cosθdθwehavexx36sinxx1cos2θ16cos6θsin(1cos2θ)1cos2θ0π2cosθsin(1cos2θ)dθ0π2dθcosθ160π2dθcos5θlettake0π2dθcosθ0π2dθcosθ=tan(θ2)=u012du(1+u2)1u21+u2=012du1u2=01(11+u+11u)du=[ln1+u1u]01=sothisintegraldiverge...dontwastetimetofindit...!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com