Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60881 by aliesam last updated on 26/May/19

∫_(−π) ^π sin((1/(1−x^2 ))) dx

$$\underset{−\pi} {\overset{\pi} {\int}}{sin}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\right)\:{dx} \\ $$

Commented by MJS last updated on 26/May/19

I don′t think we can solve this, not even  approximate. it′s undefined at x=±1 and  it′s oszillating very fast around these values  of x  ∫_(−π) ^π sin (1/(1−x^2 )) dx=2∫_0 ^π sin (1/(1−x^2 )) dx

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this},\:\mathrm{not}\:\mathrm{even} \\ $$$$\mathrm{approximate}.\:\mathrm{it}'\mathrm{s}\:\mathrm{undefined}\:\mathrm{at}\:{x}=\pm\mathrm{1}\:\mathrm{and} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{oszillating}\:\mathrm{very}\:\mathrm{fast}\:\mathrm{around}\:\mathrm{these}\:\mathrm{values} \\ $$$$\mathrm{of}\:{x} \\ $$$$\underset{−\pi} {\overset{\pi} {\int}}\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}=\mathrm{2}\underset{\mathrm{0}} {\overset{\pi} {\int}}\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx} \\ $$

Commented by aliesam last updated on 26/May/19

yes that′s right and i posted it because it is improper integrals

$${yes}\:{that}'{s}\:{right}\:{and}\:{i}\:{posted}\:{it}\:{because}\:{it}\:{is}\:{improper}\:{integrals} \\ $$

Commented by maxmathsup by imad last updated on 27/May/19

let I =∫_(−π) ^π   sin((1/(1−x^2 )))dx ⇒2I =∫_0 ^π  sin((1/(1−x^2 )))dx  =∫_0 ^1  sin((1/(1−x^2 )))dx  +∫_1 ^π  sin((1/(1−x^2 )))dx =H +K  H =_(x =sinθ)    ∫_0 ^(π/2)  sin((1/(cos^2 θ)))cosθ dθ    we have x−(x^3 /6) ≤sinx≤x ⇒  (1/(cos^2 θ)) −(1/(6cos^6 θ)) ≤ sin((1/(cos^2 θ))) ≤(1/(cos^2 θ)) ⇒ ∫_0 ^(π/2)  cosθ sin((1/(cos^2 θ)))dθ   ≥ ∫_0 ^(π/2)   (dθ/(cosθ)) −(1/6) ∫_0 ^(π/2)    (dθ/(cos^5 θ))   let take ∫_0 ^(π/2)  (dθ/(cosθ))  ∫_0 ^(π/2)   (dθ/(cosθ)) =_(tan((θ/2)) =u)     ∫_0 ^1     ((2du)/((1+u^2 )((1−u^2 )/(1+u^2 )))) =∫_0 ^1  ((2du)/(1−u^2 ))  =∫_0 ^1  ((1/(1+u)) +(1/(1−u)))du =[ln∣((1+u)/(1−u))∣]_0 ^1  =∞   so this integral diverge  ...dont  waste time to find it...!

$${let}\:{I}\:=\int_{−\pi} ^{\pi} \:\:{sin}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx}\:\Rightarrow\mathrm{2}{I}\:=\int_{\mathrm{0}} ^{\pi} \:{sin}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:{sin}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx}\:\:+\int_{\mathrm{1}} ^{\pi} \:{sin}\left(\frac{\mathrm{1}}{\mathrm{1}−{x}^{\mathrm{2}} }\right){dx}\:={H}\:+{K} \\ $$$${H}\:=_{{x}\:={sin}\theta} \:\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\left(\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \theta}\right){cos}\theta\:{d}\theta\:\:\:\:{we}\:{have}\:{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\:\leqslant{sinx}\leqslant{x}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \theta}\:−\frac{\mathrm{1}}{\mathrm{6}{cos}^{\mathrm{6}} \theta}\:\leqslant\:{sin}\left(\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \theta}\right)\:\leqslant\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \theta}\:\Rightarrow\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\theta\:{sin}\left(\frac{\mathrm{1}}{{cos}^{\mathrm{2}} \theta}\right){d}\theta\: \\ $$$$\geqslant\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{d}\theta}{{cos}\theta}\:−\frac{\mathrm{1}}{\mathrm{6}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{d}\theta}{{cos}^{\mathrm{5}} \theta}\:\:\:{let}\:{take}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{d}\theta}{{cos}\theta} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{d}\theta}{{cos}\theta}\:=_{{tan}\left(\frac{\theta}{\mathrm{2}}\right)\:={u}} \:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{2}{du}}{\mathrm{1}−{u}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\left(\frac{\mathrm{1}}{\mathrm{1}+{u}}\:+\frac{\mathrm{1}}{\mathrm{1}−{u}}\right){du}\:=\left[{ln}\mid\frac{\mathrm{1}+{u}}{\mathrm{1}−{u}}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \:=\infty\:\:\:{so}\:{this}\:{integral}\:{diverge}\:\:...{dont} \\ $$$${waste}\:{time}\:{to}\:{find}\:{it}...! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com