Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60960 by maxmathsup by imad last updated on 27/May/19

find ∫_(−∞) ^(+∞)   tan((1/(1+x^2 )))dx

find+tan(11+x2)dx

Commented by mathsolverby Abdo last updated on 28/May/19

let  I =∫_(−∞) ^(+∞)  tan((1/(1+x^2 )))dx ⇒  I =2 ∫_0 ^(+∞)  tan((1/(1+x^2 )))dx =_(x=tanθ)   2∫_0 ^(π/2)   tan(cos^2 θ)(1+tan^2 θ)dθ  =2 ∫_0 ^(π/2)   ((tan(cos^2 θ))/(cos^2 θ)) dθ   if we take  tan(u)∼ u+(u^3 /3)  we get   tan(cos^2 θ)∼cos^2 θ +((cos^6 θ)/3) ⇒  ((tan(cos^2 θ))/(cos^2 θ)) ∼ 1+((cos^4 θ)/3) ⇒  I ∼ 2 ∫_0 ^(π/2) (1+((cos^4 θ)/3))dθ =π +(2/3) ∫_0 ^(π/2) cos^4 θ dθ  ∫_0 ^(π/2)  cos^4 θdθ =(1/4) ∫_0 ^(π/2)  (1+cos(2θ)^2 dθ  =(1/4) ∫_0 ^(π/2)  (1+2cosθ +cos^2 (2θ))dθ  =(π/8) +(1/2) ∫_0 ^(π/2)  cosθdθ  +(1/8) ∫_0 ^(π/2) (1+cos(4θ))dθ  =(π/8) +(1/2) +(π/(16)) +0  =((3π)/(16)) +(1/2) ⇒I ∼ π +(2/3)(((3π)/(16)) +(1/2)) ⇒  I ∼ π +(π/8) +(1/3) ⇒I ∼ ((9π)/8) +(1/3)

letI=+tan(11+x2)dxI=20+tan(11+x2)dx=x=tanθ20π2tan(cos2θ)(1+tan2θ)dθ=20π2tan(cos2θ)cos2θdθifwetaketan(u)u+u33wegettan(cos2θ)cos2θ+cos6θ3tan(cos2θ)cos2θ1+cos4θ3I20π2(1+cos4θ3)dθ=π+230π2cos4θdθ0π2cos4θdθ=140π2(1+cos(2θ)2dθ=140π2(1+2cosθ+cos2(2θ))dθ=π8+120π2cosθdθ+180π2(1+cos(4θ))dθ=π8+12+π16+0=3π16+12Iπ+23(3π16+12)Iπ+π8+13I9π8+13

Commented by mathsolverby Abdo last updated on 28/May/19

I ∼ 3.86

I3.86

Terms of Service

Privacy Policy

Contact: info@tinkutara.com