Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60967 by maxmathsup by imad last updated on 27/May/19

study the integral ∫_(−∞) ^(+∞) (1−cos((2/(x^2  +1))))dx

studytheintegral+(1cos(2x2+1))dx

Commented by abdo mathsup 649 cc last updated on 28/May/19

we have cosu =Σ_(n=0) ^∞  (((−1)^n u^(2n) )/((2n)!))  =1−(u^2 /2) +(u^4 /(4!)) −...⇒−cosu =−1+(u^2 /2) −(u^4 /(4!)) +...⇒  1−cosu =(u^2 /2) −(u^4 /(4!)) +... ⇒(u^2 /2) −(u^4 /(4!)) ≤1−cosu≤(u^2 /2) ⇒  u=(2/(x^(2 ) +1)) ⇒(1/2)((2/(x^2  +1)))^2 −(1/(4!))((2/(x^2  +1)))^4 ≤1−cos((2/(x^2  +1)))  ≤ (1/2)((2/(x^2  +1)))^2  ⇒(2/((x^2  +1)^2 )) −((16)/(4!))(1/((x^2  +1)^4 ))  ≤1−cos((2/(x^2  +1)))≤ (2/((x^2  +1)^2 ))  ((16)/(4!)) =((16)/(4.3.2)) =(4/(3.2)) =(2/3) ⇒  ∫_0 ^∞   ((2dx)/((x^2  +1)^2 )) −(2/3)∫_0 ^∞    (dx/((x^2  +1)^4 )) ≤∫_0 ^∞ (1−cos((2/(x^2  +1))))dx  ≤ ∫_0 ^∞   ((2dx)/((x^2  +1)^2 )) ⇒  4 ∫_0 ^∞    (dx/((x^2  +1)^2 )) −(4/3)∫_0 ^∞   (dx/((x^2  +1)^4 )) ≤ I≤4∫_0 ^∞   (dx/((x^2  +1)^2 ))  ∫_0 ^∞    (dx/((x^2  +1)^2 )) =_(x=tanθ)      ∫_0 ^(π/2)   ((1+tan^2 θ)/((1+tan^2 θ)^2 )) dθ  =∫_0 ^(π/2)    (dθ/(1+tan^2 θ)) =∫_0 ^(π/2) cos^2 θ dθ =∫_0 ^(π/2)  ((1+cos(2θ))/2) dθ  =(π/4) +(1/4)[sin(2θ]_0 ^(π/2)  =(π/4) +0 =(π/4)  ∫_0 ^∞     (dx/((x^2  +1)^4 )) =_(x=tanθ)    ∫_0 ^(π/2)  ((1+tan^2 θ)/((1+tan^2 θ)^4 )) dθ  = ∫_0 ^(π/2)     (dθ/((1+tan^2 θ)^3 )) =∫_0 ^(π/2)  cos^6 θ dθ  =∫_0 ^(π/2) (((1+cos(2θ))/2))^3  dθ  =(1/8) ∫_0 ^(π/2) ( 1 +3cos(2θ) +3cos^2 (2θ) +cos^3 (2θ))dθ  =(π/(16)) +(3/8) ∫_0 ^(π/2)  cos(2θ)dθ +(1/8) ∫_0 ^(π/2)  cos^3 (2θ)dθ  =(π/(16)) +(3/(16))[sin(2θ)]_0 ^(π/2)  +(1/8) ∫_0 ^(π/2)  cos^3 (2θ)dθ  =(π/(16)) +(1/8) ∫_0 ^(π/2)  cos^3 (2θ)dθ

wehavecosu=n=0(1)nu2n(2n)!=1u22+u44!...cosu=1+u22u44!+...1cosu=u22u44!+...u22u44!1cosuu22u=2x2+112(2x2+1)214!(2x2+1)41cos(2x2+1)12(2x2+1)22(x2+1)2164!1(x2+1)41cos(2x2+1)2(x2+1)2164!=164.3.2=43.2=2302dx(x2+1)2230dx(x2+1)40(1cos(2x2+1))dx02dx(x2+1)240dx(x2+1)2430dx(x2+1)4I40dx(x2+1)20dx(x2+1)2=x=tanθ0π21+tan2θ(1+tan2θ)2dθ=0π2dθ1+tan2θ=0π2cos2θdθ=0π21+cos(2θ)2dθ=π4+14[sin(2θ]0π2=π4+0=π40dx(x2+1)4=x=tanθ0π21+tan2θ(1+tan2θ)4dθ=0π2dθ(1+tan2θ)3=0π2cos6θdθ=0π2(1+cos(2θ)2)3dθ=180π2(1+3cos(2θ)+3cos2(2θ)+cos3(2θ))dθ=π16+380π2cos(2θ)dθ+180π2cos3(2θ)dθ=π16+316[sin(2θ)]0π2+180π2cos3(2θ)dθ=π16+180π2cos3(2θ)dθ

Commented by abdo mathsup 649 cc last updated on 28/May/19

let I =∫_(−∞) ^(+∞) (1−cos((2/(x^2  +1))))dx ⇒  I =2 ∫_0 ^∞   (1−cos((2/(x^2  +1)))dx   the impropr limit is  ∞    we have  for x∈v(∞)  (2/(x^2  +1)) ∈v(o) we hsve  1−cos(u)∼ (u^2 /2)  ⇒1−cos((2/(x^(2 ) +1)))∼(1/2)((2/(x^2 +1)))^2   =(2/((x^2  +1)^2 ))  →lim_(x→+∞) x^2 (1−cos((2/(x^2  +1))))=0  so the convergence of I assured.

letI=+(1cos(2x2+1))dxI=20(1cos(2x2+1)dxtheimproprlimitiswehaveforxv()2x2+1v(o)wehsve1cos(u)u221cos(2x2+1)12(2x2+1)2=2(x2+1)2limx+x2(1cos(2x2+1))=0sotheconvergenceofIassured.

Commented by abdo mathsup 649 cc last updated on 28/May/19

we have  cos^3 x =(((e^(ix)  +e^(−ix) )/2))^3 =(1/8)(e^(ix)  +e^(−ix) )^3   =(1/8)(e^(3ix)  +3e^(2ix)  e^(−ix)  +3 e^(ix)  e^(−2ix)   +e^(−3ix) )  =(1/8)( 2cos(3x) +3 (2cos(x)))  =(1/4)cos(3x) +(3/4) cos(x) ⇒  ∫_0 ^(π/2) cos^3 (2θ) dθ=∫_0 ^(π/2) ((1/4)cos(6x)+(3/4) cos(2θ))dθ  =(1/(24))[sin(6x)]_0 ^(π/2)  +(3/8)[sin(2θ)]_0 ^(π/2)  =0 ⇒  π −(4/3) (π/(16)) ≤ I ≤ π  ⇒ π −(π/(12)) ≤I ≤π  ⇒  ((11π)/(12)) ≤ I ≤ π      we can take v_0 =((((11π)/(12)) +π)/2)  =((23π)/(24))  as approximate value of  ∫_(−∞) ^(+∞)  (1−cos((2/(x^2  +1))))dx

wehavecos3x=(eix+eix2)3=18(eix+eix)3=18(e3ix+3e2ixeix+3eixe2ix+e3ix)=18(2cos(3x)+3(2cos(x)))=14cos(3x)+34cos(x)0π2cos3(2θ)dθ=0π2(14cos(6x)+34cos(2θ))dθ=124[sin(6x)]0π2+38[sin(2θ)]0π2=0π43π16Iπππ12Iπ11π12Iπwecantakev0=11π12+π2=23π24asapproximatevalueof+(1cos(2x2+1))dx

Commented by abdo mathsup 649 cc last updated on 28/May/19

I ∼ 3,01

I3,01

Terms of Service

Privacy Policy

Contact: info@tinkutara.com