Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 60976 by maxmathsup by imad last updated on 28/May/19

find Σ_(n=1) ^∞  (1/n^2 ) by use of integral ∫_0 ^(π/2) ln(2cosθ)dθ  .

findn=11n2byuseofintegral0π2ln(2cosθ)dθ.

Commented by maxmathsup by imad last updated on 31/May/19

we have ∫_0 ^(π/2) ln(2cosθ)dθ =∫_0 ^(π/2) ln(e^(iθ)  +e^(−iθ) )dθ  =∫_0 ^(π/2) ln{e^(iθ) (1+e^(−2iθ) )}dθ =∫_0 ^(π/2) iθ dθ +∫_0 ^(π/2)  ln(1+e^(−2iθ) )dθ  =i[(θ^2 /2)]_0 ^(π/2)  +∫_0 ^(π/2) ln(1+e^(−2iθ) )dθ =i(π^2 /8) +∫_0 ^(π/2) ln(1+e^(−2iθ) )dθ  we have for ∣z∣≤1 ln^′ (1+z) =(1/(1+z)) =Σ_(n=0) ^∞ (−1)^n z^n  ⇒  ln(1+z) =Σ_(n=0) ^∞  (((−1)^n  z^(n+1) )/(n+1)) +c        (c=0)  =Σ_(n=1) ^∞  (((−1)^(n−1)  z^n )/n)  ⇒∫_0 ^(π/2) ln(1+e^(−2iθ) ) =∫_0 ^(π/2) (Σ_(n=1) ^∞  (((−1)^(n−1) e^(−2inθ) )/n))dθ  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^(π/2)  e^(−2inθ)  dθ  =Σ_(n=1) ^∞   (((−1)^(n−1) )/n) [−(1/(2in)) e^(−2inθ) ]_0 ^(π/2)   =−(1/(2i)) Σ_(n=1) ^∞   (((−1)^(n−1) )/n^2 ){  (−1)^n −1}  =(1/i) Σ_(n=0) ^∞   (1/((2n+1)^2 )) =−i Σ_(n=0) ^∞   (1/((2n+1)^2 )) ⇒  ∫_0 ^(π/2) ln(2cosθ)dθ =i((π^2 /8) − Σ_(n=0) ^∞  (1/((2n+1)^2 )))  but this integral is  real ⇒(π^2 /8) −Σ_(n=0) ^∞  (1/((2n+1)^2 )) =0 ⇒Σ_(n=0) ^∞   (1/((2n+1)^2 )) =(π^2 /8)  we have Σ_(n=1) ^∞  (1/n^2 ) =(1/4) Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒  (3/4) Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /8) ⇒ Σ_(n=1) ^∞  (1/n^2 ) =(4/3)(π^2 /8) =(π^2 /6) .

wehave0π2ln(2cosθ)dθ=0π2ln(eiθ+eiθ)dθ=0π2ln{eiθ(1+e2iθ)}dθ=0π2iθdθ+0π2ln(1+e2iθ)dθ=i[θ22]0π2+0π2ln(1+e2iθ)dθ=iπ28+0π2ln(1+e2iθ)dθwehaveforz∣⩽1ln(1+z)=11+z=n=0(1)nznln(1+z)=n=0(1)nzn+1n+1+c(c=0)=n=1(1)n1znn0π2ln(1+e2iθ)=0π2(n=1(1)n1e2inθn)dθ=n=1(1)n1n0π2e2inθdθ=n=1(1)n1n[12ine2inθ]0π2=12in=1(1)n1n2{(1)n1}=1in=01(2n+1)2=in=01(2n+1)20π2ln(2cosθ)dθ=i(π28n=01(2n+1)2)butthisintegralisrealπ28n=01(2n+1)2=0n=01(2n+1)2=π28wehaven=11n2=14n=11n2+n=01(2n+1)234n=11n2=π28n=11n2=43π28=π26.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com