All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 60976 by maxmathsup by imad last updated on 28/May/19
find∑n=1∞1n2byuseofintegral∫0π2ln(2cosθ)dθ.
Commented by maxmathsup by imad last updated on 31/May/19
wehave∫0π2ln(2cosθ)dθ=∫0π2ln(eiθ+e−iθ)dθ=∫0π2ln{eiθ(1+e−2iθ)}dθ=∫0π2iθdθ+∫0π2ln(1+e−2iθ)dθ=i[θ22]0π2+∫0π2ln(1+e−2iθ)dθ=iπ28+∫0π2ln(1+e−2iθ)dθwehavefor∣z∣⩽1ln′(1+z)=11+z=∑n=0∞(−1)nzn⇒ln(1+z)=∑n=0∞(−1)nzn+1n+1+c(c=0)=∑n=1∞(−1)n−1znn⇒∫0π2ln(1+e−2iθ)=∫0π2(∑n=1∞(−1)n−1e−2inθn)dθ=∑n=1∞(−1)n−1n∫0π2e−2inθdθ=∑n=1∞(−1)n−1n[−12ine−2inθ]0π2=−12i∑n=1∞(−1)n−1n2{(−1)n−1}=1i∑n=0∞1(2n+1)2=−i∑n=0∞1(2n+1)2⇒∫0π2ln(2cosθ)dθ=i(π28−∑n=0∞1(2n+1)2)butthisintegralisreal⇒π28−∑n=0∞1(2n+1)2=0⇒∑n=0∞1(2n+1)2=π28wehave∑n=1∞1n2=14∑n=1∞1n2+∑n=0∞1(2n+1)2⇒34∑n=1∞1n2=π28⇒∑n=1∞1n2=43π28=π26.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com