Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 60984 by naka3546 last updated on 28/May/19

(a/(a−b))  +  (b/(b−c))  +  (c/(c−a))  =  4  ab^2  + bc^2  + abc + ca^2   =  a^2 b + b^2 c + c^2 a  ((a/(a−b)))^3   +  ((b/(b−c)))^3   +  ((c/(c−a)))^3   =  ?

aab+bbc+cca=4ab2+bc2+abc+ca2=a2b+b2c+c2a(aab)3+(bbc)3+(cca)3=?

Commented by naka3546 last updated on 28/May/19

73 ?

73?

Commented by Prithwish sen last updated on 28/May/19

ab^2 +bc^2 +abc+ca^2 =a^2 b+b^2 c+c^2 a  ab(a−b)+bc(b−c)+ac(c−a)=abc  (((a−b))/c)+(((b−c))/a)+(((c−a))/b)=1  ((−[(b−c)+(c−a)])/c)+ (((b−c))/a)+(((c−a))/b)=1  (b−c)[(1/a)−(1/c)] +(c−a)[(1/b)−(1/c)] =1  (((b−c)(c−a))/c)[(1/a)−(1/b)]=1  ((abc)/((a−b)(b−c)(c−a)))=−1  Now let   A=(a/((a−b))), B=(b/((b−c))), C=(c/((c−a)))  ∴ A+B+C=4, ABC=−1  we have to calculate  A^3 +B^3 +C^3   please help.

ab2+bc2+abc+ca2=a2b+b2c+c2aab(ab)+bc(bc)+ac(ca)=abc(ab)c+(bc)a+(ca)b=1[(bc)+(ca)]c+(bc)a+(ca)b=1(bc)[1a1c]+(ca)[1b1c]=1(bc)(ca)c[1a1b]=1abc(ab)(bc)(ca)=1NowletA=a(ab),B=b(bc),C=c(ca)A+B+C=4,ABC=1wehavetocalculateA3+B3+C3pleasehelp.

Commented by naka3546 last updated on 28/May/19

(a/(a−b)) + (b/(b−c)) + (c/(c−a))  =  4  ⇒  3 + ((b/(a−b)) + (c/(b−c)) + (a/(c−a)))  =  4  ⇔  ((b/(a−b)) + (c/(b−c)) + (a/(c−a)))  =  1  ⇒  ((abc − (a^2 b + b^2 c + c^2 a))/((ab^2  + bc^2  + ca^2 ) − (a^2 b + b^2 c + c^2 a))) = 1  ⇔  abc  =  ab^2  + bc^2  + ca^2    ...  (i)    abc  + ab^2  + bc^2  + ca^2   =  a^2 b + b^2 c + c^2 a  ⇔  a^2 b + b^2 c + c^2 a  =  2abc   ... (ii)    ⇔  (a−b)(b−c)(c−a)  =  −abc   ... (iii)    ((a/(a−b)))^3  + ((b/(b−c)))^3  + ((c/(c−a)))^3    = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  − 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))(((ab)/((a−b)(b−c))) + ((bc)/((b−c)(c−a))) + ((ca)/((c−a)(a−b)))) + 3(((abc)/((a−b)(b−c)(c−a))))  = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  − 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))(− ((c−a)/c) − ((a−b)/a) − ((b−c)/b)) + 3(((abc)/((a−b)(b−c)(c−a))))  = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  + 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))( ((c−a)/c) + ((a−b)/a) + ((b−c)/b)) + 3(((abc)/(−abc)))  = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  + 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))( 3 − ((a/c) + (b/a) + (c/b))) + 3(((abc)/(−abc)))  = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  + 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))( 3 − (((a^2 b + b^2 c + c^2 a)/(abc)))) − 3  = ((a/(a−b)) + (b/(b−c)) + (c/(c−a)))^3  + 3((a/(a−b)) + (b/(b−c)) + (c/(c−a)))( 3 − (((2abc)/(abc)))) − 3  = (4)^3  + 3(4)( 3 − 2) − 3  =  64 + 12 − 3  =  73

aab+bbc+cca=43+(bab+cbc+aca)=4(bab+cbc+aca)=1abc(a2b+b2c+c2a)(ab2+bc2+ca2)(a2b+b2c+c2a)=1abc=ab2+bc2+ca2...(i)abc+ab2+bc2+ca2=a2b+b2c+c2aa2b+b2c+c2a=2abc...(ii)(ab)(bc)(ca)=abc...(iii)(aab)3+(bbc)3+(cca)3=(aab+bbc+cca)33(aab+bbc+cca)(ab(ab)(bc)+bc(bc)(ca)+ca(ca)(ab))+3(abc(ab)(bc)(ca))=(aab+bbc+cca)33(aab+bbc+cca)(cacababcb)+3(abc(ab)(bc)(ca))=(aab+bbc+cca)3+3(aab+bbc+cca)(cac+aba+bcb)+3(abcabc)=(aab+bbc+cca)3+3(aab+bbc+cca)(3(ac+ba+cb))+3(abcabc)=(aab+bbc+cca)3+3(aab+bbc+cca)(3(a2b+b2c+c2aabc))3=(aab+bbc+cca)3+3(aab+bbc+cca)(3(2abcabc))3=(4)3+3(4)(32)3=64+123=73

Commented by MJS last updated on 28/May/19

how do you get (i)?  (b/(a−b))+(c/(b−c))+(a/(c−a))≠((abc−(a^2 b+b^2 c+c^2 a))/((ab^2 +bc^2 +ca^2 )−(a^2 b+b^2 c+c^2 a)))

howdoyouget(i)?bab+cbc+acaabc(a2b+b2c+c2a)(ab2+bc2+ca2)(a2b+b2c+c2a)

Commented by Prithwish sen last updated on 28/May/19

great sir

greatsir

Commented by naka3546 last updated on 28/May/19

ab^2  + bc^2  + ca^2  + abc  =  a^2 b + b^2 c + c^2 a  ⇒ (a+b+c)(ab+bc+ca) − (2abc + ab^2  + bc^2  + ca^2 )  =  a^2 b + b^2 c + c^2 a  ⇔  (a+b+c)(ab+bc+ca)  =  2(a^2 b + b^2 c + c^2 a)    (b/(a−b)) + (c/(b−c)) + (a/(c−a))  =  1  ⇒  ((b(b−c)(c−a) + c(a−b)(c−a) + a(a−b)(b−c))/((a−b)(b−c)(c−a)))  =  1  ⇒  ((b^2 c − bc^2  − ab^2  + abc + c^2 a − bc^2  − ca^2  + abc + a^2 b − ab^2  − ca^2  + abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((a^2 b + b^2 c + c^2 a) − 2(ab^2  + bc^2  + ca^2 ) + 3abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((ab^2  + bc^2  + ca^2  + abc) − 2(ab^2  + bc^2  + ca^2 ) + 3abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((4abc) − (a^2 b + b^2 c + c^2 a))/((ab^2  + bc^2  + ca^2 ) − (a^2 b + b^2 c + c^2 a)))  =  1  4abc  =  ab^2  + bc^2  + ca^2   ⇔  a^2 b + b^2 c + c^2 a  =  5abc  May  be  there  are  mistakes .  Typo ,  sir.

ab2+bc2+ca2+abc=a2b+b2c+c2a(a+b+c)(ab+bc+ca)(2abc+ab2+bc2+ca2)=a2b+b2c+c2a(a+b+c)(ab+bc+ca)=2(a2b+b2c+c2a)bab+cbc+aca=1b(bc)(ca)+c(ab)(ca)+a(ab)(bc)(ab)(bc)(ca)=1b2cbc2ab2+abc+c2abc2ca2+abc+a2bab2ca2+abc(ab)(bc)(ca)=1(a2b+b2c+c2a)2(ab2+bc2+ca2)+3abc(ab)(bc)(ca)=1(ab2+bc2+ca2+abc)2(ab2+bc2+ca2)+3abc(ab)(bc)(ca)=1(4abc)(a2b+b2c+c2a)(ab2+bc2+ca2)(a2b+b2c+c2a)=14abc=ab2+bc2+ca2a2b+b2c+c2a=5abcMaybetherearemistakes.Typo,sir.

Commented by naka3546 last updated on 28/May/19

ab^2  + bc^2  + ca^2  + abc  =  a^2 b + b^2 c + c^2 a  ⇒ (a+b+c)(ab+bc+ca) − (2abc + ab^2  + bc^2  + ca^2 )  =  a^2 b + b^2 c + c^2 a  ⇔  (a+b+c)(ab+bc+ca)  =  2(a^2 b + b^2 c + c^2 a)    (b/(a−b)) + (c/(b−c)) + (a/(c−a))  =  1  ⇒  ((b(b−c)(c−a) + c(a−b)(c−a) + a(a−b)(b−c))/((a−b)(b−c)(c−a)))  =  1  ⇒  ((b^2 c − bc^2  − ab^2  + abc + c^2 a − bc^2  − ca^2  + abc + a^2 b − ab^2  − ca^2  + abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((a^2 b + b^2 c + c^2 a) − 2(ab^2  + bc^2  + ca^2 ) + 3abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((ab^2  + bc^2  + ca^2  + abc) − 2(ab^2  + bc^2  + ca^2 ) + 3abc)/((a−b)(b−c)(c−a)))  =  1  ⇒  (((4abc) − (a^2 b + b^2 c + c^2 a))/((ab^2  + bc^2  + ca^2 ) − (a^2 b + b^2 c + c^2 a)))  =  1  4abc  =  ab^2  + bc^2  + ca^2   ⇔  a^2 b + b^2 c + c^2 a  =  5abc  May  be  there  are  mistakes .  Typo ,  sir.

ab2+bc2+ca2+abc=a2b+b2c+c2a(a+b+c)(ab+bc+ca)(2abc+ab2+bc2+ca2)=a2b+b2c+c2a(a+b+c)(ab+bc+ca)=2(a2b+b2c+c2a)bab+cbc+aca=1b(bc)(ca)+c(ab)(ca)+a(ab)(bc)(ab)(bc)(ca)=1b2cbc2ab2+abc+c2abc2ca2+abc+a2bab2ca2+abc(ab)(bc)(ca)=1(a2b+b2c+c2a)2(ab2+bc2+ca2)+3abc(ab)(bc)(ca)=1(ab2+bc2+ca2+abc)2(ab2+bc2+ca2)+3abc(ab)(bc)(ca)=1(4abc)(a2b+b2c+c2a)(ab2+bc2+ca2)(a2b+b2c+c2a)=14abc=ab2+bc2+ca2a2b+b2c+c2a=5abcMaybetherearemistakes.Typo,sir.

Commented by naka3546 last updated on 28/May/19

37  ?

37?

Commented by MJS last updated on 28/May/19

I′ll have to look into it again...

Illhavetolookintoitagain...

Answered by tanmay last updated on 28/May/19

(a/(a−b))+(b/(b−c))+(c/(c−a))=4  (1/(1−(b/a)))+(1/(1−(c/b)))+(1/(1−(a/c)))=4  u=(b/a)  v=(c/b)   w=(a/c)   uvw=1  (1/(1−u))+(1/(1−v))+(1/(1−w))=4  (1/(1−u))−1+(1/(1−v))−1+(1/(1−w))−1=1  (u/(1−u))+(v/(1−v))+(w/(1−w))=1....(1)  ((1/(1−u)))^3 +((1/(1−v)))^3 +((1/(1−w)))^3 =???  ab^2 +bc^2 +ca^2 +abc−a^2 b−b^2 c−c^2 a=0  ab(b−a)+bc(c−b)+ca(a−c)+abc=0  a^2 ×b((b/a)−1)+b^2 ×c((c/b)−1)+c^2 a((a/c)−1)+abc=0  a^3 ×(b/a)((b/a)−1)+b^3 ×(c/b)((c/b)−1)+c^3 ×(a/c)((a/c)−1)+abc=0  a^2 b(u−1)+b^2 c(v−1)+c^2 a(w−1)+abc=0  wait...  u=(b/a)   v=(c/b)   w=(a/c)   uvw=1  u:v:w=(b/a):(c/b):(a/c)=b^2 c:ac^2 :a^2 b  b^2 c=uk   ac^2 =vk   a^2 b=wk  a^3 b^3 c^3 =uvwk^3   abc=(uvw)^(1/3) k  abc=k  wk(u−1)+uk(v−1)+vk(w−1)+k=0  uwk−wk+uvk−uk+vwk−vk+k=0

aab+bbc+cca=411ba+11cb+11ac=4u=bav=cbw=acuvw=111u+11v+11w=411u1+11v1+11w1=1u1u+v1v+w1w=1....(1)(11u)3+(11v)3+(11w)3=???ab2+bc2+ca2+abca2bb2cc2a=0ab(ba)+bc(cb)+ca(ac)+abc=0a2×b(ba1)+b2×c(cb1)+c2a(ac1)+abc=0a3×ba(ba1)+b3×cb(cb1)+c3×ac(ac1)+abc=0a2b(u1)+b2c(v1)+c2a(w1)+abc=0wait...u=bav=cbw=acuvw=1u:v:w=ba:cb:ac=b2c:ac2:a2bb2c=ukac2=vka2b=wka3b3c3=uvwk3abc=(uvw)13kabc=kwk(u1)+uk(v1)+vk(w1)+k=0uwkwk+uvkuk+vwkvk+k=0

Commented by Prithwish sen last updated on 28/May/19

great thinking sir.

greatthinkingsir.

Commented by tanmay last updated on 28/May/19

k(uw+uv+vw−u−v−w)=0  k≠0  uw+uv+vw−u−v−k=0  u+v+k=uv+vw+uw  wait...

k(uw+uv+vwuvw)=0k0uw+uv+vwuvk=0u+v+k=uv+vw+uwwait...

Answered by MJS last updated on 29/May/19

let b=pa ∧ c=qa  (1) ⇒ (3−2q)p^2 +(3q^2 −3q−2)p+q(3−2q)=0  (2) ⇒ (1−q)p^2 +(q^2 +q−1)p+q(1−q)=0  ⇒  q=.198062 p= { ((.307979)),((.643104)) :}  q=1.55496 p= { ((.307979)),((5.04892)) :}  q=3.24698 p= { ((.643104)),((5.04892)) :}  in all cases we get the result 25  btw (1/(.198...))=5.04...; (1/(.307...))=3.24...; (1/(.643...))=1.55...

letb=pac=qa(1)(32q)p2+(3q23q2)p+q(32q)=0(2)(1q)p2+(q2+q1)p+q(1q)=0q=.198062p={.307979.643104q=1.55496p={.3079795.04892q=3.24698p={.6431045.04892inallcaseswegettheresult25btw1.198...=5.04...;1.307...=3.24...;1.643...=1.55...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com