Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 60987 by ajfour last updated on 28/May/19

Commented by ajfour last updated on 28/May/19

Find the illuminated area of  the inner curved surface of   shown, hollow open cylinder.        [where  a>2R((H/h)−1)]

Findtheilluminatedareaoftheinnercurvedsurfaceofshown,hollowopencylinder.[wherea>2R(Hh1)]

Answered by mr W last updated on 28/May/19

Commented by mr W last updated on 30/May/19

tan α=((R sin θ)/(a+R(1+cos θ)))=((sin θ)/((a/R)+1+cos θ))  θ_0 =(π/2)+α_0 =(π/2)+sin^(−1) (R/(a+R))  R^2 =SA^2 +(a+R)^2 −2 SA (a+R)cos α  ⇒SA^2 −2(a+R)cos α SA+a(a+2R)=0  SA=(a+R) cos α±(√((a+R)^2 cos^2  α−a(a+2R)))  SA=(a+R){cos α−(√(cos^2  α−((a(a+2R))/((a+R)^2 ))))}  SB=(a+R){cos α+(√(cos^2  α−((a(a+2R))/((a+R)^2 ))))}  AB=SB−SA=2(a+R)(√(cos^2  α−((a(a+2R))/((a+R)^2 ))))  ((h−z)/(H−h))=((AB)/(SA))  ⇒h−z=(H−h)((AB)/(SA))=(H−h)((2(a+R)(√(cos^2  α−((a(a+2R))/((a+R)^2 )))))/((a+R){cos α−(√(cos^2  α−((a(a+2R))/((a+R)^2 ))))}))  ⇒h−z=((2(H−h))/({(1/(√(1−((a(a+2R))/((a+R)^2 ))×(1/(cos^2  α)))))−1}))  ⇒Δz=h−z=((2(H−h))/((1/(√(1−((a(a+2R))/((a+R)^2 ))[1+(((sin θ)/((a/R)+1+cos θ)))^2 ])))−1))  Illuminated area=A  let λ=(a/R)  A=2∫_0 ^θ_0  ΔzRdθ  ⇒A=4R(H−h)∫_0 ^θ_0  (dθ/((1/(√(1−((a(a+2R))/((a+R)^2 ))[1+(((sin θ)/((a/R)+1+cos θ)))^2 ])))−1))  ⇒A=4R(H−h)∫_0 ^((π/2)+sin^(−1) (1/(1+λ))) (dθ/((1/(√(1−[1−(1/((1+λ)^2 ))][1+(((sin θ)/(1+λ+cos θ)))^2 ])))−1))  with μ=1+λ=((a+R)/R)  (A/(4R(H−h)))=∫_0 ^((π/2)+sin^(−1) (1/μ)) (dθ/((1/(√(1−[1−(1/μ^2 )][1+(((sin θ)/(μ+cos θ)))^2 ])))−1))  =(1/(μ^2 −1))∫_0 ^((π/2)+sin^(−1) (1/μ)) (1+μ cos θ) dθ  =(1/(μ^2 −1))[μ sin θ+θ]_0 ^((π/2)+sin^(−1) (1/μ))   =(1/(μ^2 −1))[μ sin ((π/2)+sin^(−1) (1/μ))+(π/2)+sin^(−1) (1/μ)]  =(1/(μ^2 −1))[(√(μ^2 −1))+(π/2)+sin^(−1) (1/μ)]    ⇒A=((4R(H−h))/(μ^2 −1))((√(μ^2 −1))+(π/2)+sin^(−1) (1/μ))  with μ=((a+R)/R)

tanα=Rsinθa+R(1+cosθ)=sinθaR+1+cosθθ0=π2+α0=π2+sin1Ra+RR2=SA2+(a+R)22SA(a+R)cosαSA22(a+R)cosαSA+a(a+2R)=0SA=(a+R)cosα±(a+R)2cos2αa(a+2R)SA=(a+R){cosαcos2αa(a+2R)(a+R)2}SB=(a+R){cosα+cos2αa(a+2R)(a+R)2}AB=SBSA=2(a+R)cos2αa(a+2R)(a+R)2hzHh=ABSAhz=(Hh)ABSA=(Hh)2(a+R)cos2αa(a+2R)(a+R)2(a+R){cosαcos2αa(a+2R)(a+R)2}hz=2(Hh){11a(a+2R)(a+R)2×1cos2α1}Δz=hz=2(Hh)11a(a+2R)(a+R)2[1+(sinθaR+1+cosθ)2]1Illuminatedarea=Aletλ=aRA=20θ0ΔzRdθA=4R(Hh)0θ0dθ11a(a+2R)(a+R)2[1+(sinθaR+1+cosθ)2]1A=4R(Hh)0π2+sin111+λdθ11[11(1+λ)2][1+(sinθ1+λ+cosθ)2]1withμ=1+λ=a+RRA4R(Hh)=0π2+sin11μdθ11[11μ2][1+(sinθμ+cosθ)2]1=1μ210π2+sin11μ(1+μcosθ)dθ=1μ21[μsinθ+θ]0π2+sin11μ=1μ21[μsin(π2+sin11μ)+π2+sin11μ]=1μ21[μ21+π2+sin11μ]A=4R(Hh)μ21(μ21+π2+sin11μ)withμ=a+RR

Commented by ajfour last updated on 30/May/19

Great, work Sir! thanks so much.  _________________________

Great,workSir!thankssomuch._________________________

Commented by mr W last updated on 30/May/19

thanks for checking sir!  the integral seems to be complicated,  but it′s really easy after the expression  is simplified, see below.  (1/((1/(√(1−[1−(1/μ^2 )][1+(((sin θ)/(μ+cos θ)))^2 ])))−1))  =(1/((μ/(√(μ^2 −(μ^2 −1)[1+(((sin θ)/(μ+cos θ)))^2 ])))−1))  =(1/((μ/(√(1−(μ^2 −1)(((sin θ)/(μ+cos θ)))^2 )))−1))  =(1/((((μ+cos θ)μ)/(√((μ+cos θ)^2 −(μ^2 −1)sin^2  θ)))−1))  =(1/((((μ+cos θ)μ)/(√(μ^2 +2μcos θ+cos^2  θ−μ^2  sin^2  θ+sin^2  θ)))−1))  =(1/((((μ+cos θ)μ)/(√(μ^2  cos^2  θ+2μcos θ+1)))−1))  =(1/((((μ+cos θ)μ)/(μcos θ+1))−1))  =((μcos θ+1)/((μ+cos θ)μ−(μcos θ+1)))  =((μ cos θ+1)/(μ^2 −1))

thanksforcheckingsir!theintegralseemstobecomplicated,butitsreallyeasyaftertheexpressionissimplified,seebelow.111[11μ2][1+(sinθμ+cosθ)2]1=1μμ2(μ21)[1+(sinθμ+cosθ)2]1=1μ1(μ21)(sinθμ+cosθ)21=1(μ+cosθ)μ(μ+cosθ)2(μ21)sin2θ1=1(μ+cosθ)μμ2+2μcosθ+cos2θμ2sin2θ+sin2θ1=1(μ+cosθ)μμ2cos2θ+2μcosθ+11=1(μ+cosθ)μμcosθ+11=μcosθ+1(μ+cosθ)μ(μcosθ+1)=μcosθ+1μ21

Commented by ajfour last updated on 30/May/19

True Sir, thanks again.

TrueSir,thanksagain.

Commented by mr W last updated on 30/May/19

it′s again a nice question sir!

itsagainanicequestionsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com