Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 6099 by LMTV last updated on 13/Jun/16

∫_0 ^∞ e^(−st) sinh atdt=?  or...  −(1/s)[e^(−st) sinh at]_0 ^∞ =?  −(a/s^2 )[e^(−st) coth at]_0 ^∞ =?

$$\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} \mathrm{sinh}\:{atdt}=? \\ $$$$\mathrm{or}... \\ $$$$−\frac{\mathrm{1}}{{s}}\left[{e}^{−{st}} \mathrm{sinh}\:{at}\right]_{\mathrm{0}} ^{\infty} =? \\ $$$$−\frac{{a}}{{s}^{\mathrm{2}} }\left[{e}^{−{st}} \mathrm{coth}\:{at}\right]_{\mathrm{0}} ^{\infty} =? \\ $$

Commented by LMTV last updated on 13/Jun/16

sinh ∞=?  cosh ∞=?

$$\mathrm{sinh}\:\infty=? \\ $$$$\mathrm{cosh}\:\infty=? \\ $$

Answered by Yozzii last updated on 13/Jun/16

I=∫e^(−st) sinhatdt=∫e^(−st) ((e^(at) −e^(−at) )/2)dt  I=(1/2)∫(e^(t(a−s)) −e^(−t(a+s)) )dt  I=(1/2)((1/(a−s))e^(t(a−s)) +(1/(a+s))e^(−t(a+s)) )+C  ∴J=∫_0 ^∞ e^(−st) sinhatdt=lim_(x→∞) ∫_0 ^x e^(−st) sinhatdt  ∫_0 ^∞ e^(−st) sinhatdt=(1/2)lim_(x→∞) (((exp(t(a−s)))/(a−s))+((exp(−t(a+s)))/(a+s)))∣_0 ^x   J=(1/2)lim_(x→∞) (((exp(x(a−s)))/(a−s))+((exp(−x(a+s)))/(a+s))+(1/(s−a))−(1/(a+s)))  J is convergent if a−s<0 and a+s>0  ⇒a<s and a>−s⇒−s<a<s⇒0≤∣a∣<s   which then requires s>0.  if either a−s>0 or a+s<0  ⇒a>s or a<−s⇒∣a∣>s, then J diverges  since lim_(x→∞) exp(x(a−s))=exp(+∞)=+∞  or also lim_(x→∞) exp(−x(a+s))=exp(+∞)=+∞,  depending on the comparison ∣a∣>s.  In either case, a≠s so a−s≠0. Also,a≠−s⇒a+s≠0.    If indeed 0≤∣a∣<s then  J=(1/2)(((exp(−∞))/(a−s))+((exp(−∞))/(a+s))+((a+s−s+a)/(s^2 −a^2 )))  J=(a/(s^2 −a^2 ))  or ∫_0 ^∞ e^(−st) sinhatdt=(a/(s^2 −a^2 )) whenever 0≤∣a∣<s.

$${I}=\int{e}^{−{st}} {sinhatdt}=\int{e}^{−{st}} \frac{{e}^{{at}} −{e}^{−{at}} }{\mathrm{2}}{dt} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int\left({e}^{{t}\left({a}−{s}\right)} −{e}^{−{t}\left({a}+{s}\right)} \right){dt} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{{a}−{s}}{e}^{{t}\left({a}−{s}\right)} +\frac{\mathrm{1}}{{a}+{s}}{e}^{−{t}\left({a}+{s}\right)} \right)+{C} \\ $$$$\therefore{J}=\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} {sinhatdt}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\int_{\mathrm{0}} ^{{x}} {e}^{−{st}} {sinhatdt} \\ $$$$\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} {sinhatdt}=\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{exp}\left({t}\left({a}−{s}\right)\right)}{{a}−{s}}+\frac{{exp}\left(−{t}\left({a}+{s}\right)\right)}{{a}+{s}}\right)\mid_{\mathrm{0}} ^{{x}} \\ $$$${J}=\frac{\mathrm{1}}{\mathrm{2}}\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{exp}\left({x}\left({a}−{s}\right)\right)}{{a}−{s}}+\frac{{exp}\left(−{x}\left({a}+{s}\right)\right)}{{a}+{s}}+\frac{\mathrm{1}}{{s}−{a}}−\frac{\mathrm{1}}{{a}+{s}}\right) \\ $$$${J}\:{is}\:{convergent}\:{if}\:{a}−{s}<\mathrm{0}\:{and}\:{a}+{s}>\mathrm{0} \\ $$$$\Rightarrow{a}<{s}\:{and}\:{a}>−{s}\Rightarrow−{s}<{a}<{s}\Rightarrow\mathrm{0}\leqslant\mid{a}\mid<{s}\: \\ $$$${which}\:{then}\:{requires}\:{s}>\mathrm{0}. \\ $$$${if}\:{either}\:{a}−{s}>\mathrm{0}\:{or}\:{a}+{s}<\mathrm{0} \\ $$$$\Rightarrow{a}>{s}\:{or}\:{a}<−{s}\Rightarrow\mid{a}\mid>{s},\:{then}\:{J}\:{diverges} \\ $$$${since}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}{exp}\left({x}\left({a}−{s}\right)\right)={exp}\left(+\infty\right)=+\infty \\ $$$${or}\:{also}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}{exp}\left(−{x}\left({a}+{s}\right)\right)={exp}\left(+\infty\right)=+\infty, \\ $$$${depending}\:{on}\:{the}\:{comparison}\:\mid{a}\mid>{s}. \\ $$$${In}\:{either}\:{case},\:{a}\neq{s}\:{so}\:{a}−{s}\neq\mathrm{0}.\:{Also},{a}\neq−{s}\Rightarrow{a}+{s}\neq\mathrm{0}. \\ $$$$ \\ $$$${If}\:{indeed}\:\mathrm{0}\leqslant\mid{a}\mid<{s}\:{then} \\ $$$${J}=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{exp}\left(−\infty\right)}{{a}−{s}}+\frac{{exp}\left(−\infty\right)}{{a}+{s}}+\frac{{a}+{s}−{s}+{a}}{{s}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right) \\ $$$${J}=\frac{{a}}{{s}^{\mathrm{2}} −{a}^{\mathrm{2}} } \\ $$$${or}\:\int_{\mathrm{0}} ^{\infty} {e}^{−{st}} {sinhatdt}=\frac{{a}}{{s}^{\mathrm{2}} −{a}^{\mathrm{2}} }\:{whenever}\:\mathrm{0}\leqslant\mid{a}\mid<{s}. \\ $$$$ \\ $$

Answered by 2closedStringsMeet last updated on 13/Jun/16

Use sinh(at) ≡ (1/2)(e^(at) −e^(−at) )  ⇒ (1/2)∫_0 ^∞ e^(−t(s−a)) −e^(−t(s+a)) dt → easy

$${Use}\:{sinh}\left({at}\right)\:\equiv\:\frac{\mathrm{1}}{\mathrm{2}}\left({e}^{{at}} −{e}^{−{at}} \right) \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\infty} {\int}}{e}^{−{t}\left({s}−{a}\right)} −{e}^{−{t}\left({s}+{a}\right)} {dt}\:\rightarrow\:{easy} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com