All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 61039 by mathsolverby Abdo last updated on 28/May/19
find∫01arctan(21+x)dx
Commented by maxmathsup by imad last updated on 29/May/19
letA=∫01arctn(21+x)dxbypartsu′=1andv=arctan(21+x)⇒v′=−2(1+x)21+(21+x)2=−2(1+x2){1+4(1+x)2}=−21+x2+4=−2x2+5⇒A=[xarctan(21+x)]01−∫01−2xx2+5dx=π4+∫012xx2+5dx=π4+[ln(x2+5)]01=π4+ln(6)−ln(5).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com