Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 61165 by Tawa1 last updated on 29/May/19

Answered by MJS last updated on 30/May/19

∫((cos^2  (2x−5) cos (2x−14))/(cos (2x−7)))dx=       [t=2x−7 → dx=(dt/2)]  =(1/2)∫((cos^2  (t+2) cos (t−7))/(cos (t)))dt=       [use these:        cos^2  (t+2) =(cos 2 cos t −sin 2 sin t)^2         cos (t−7) =cos 7 cos t +sin 7 sin t        let me write c_α , s_α  for cos α, sin α]  =((c_2 ^2 c_7 )/2)∫cos^2  t dt+((c_2 (c_2 s_7 −2c_7 s_2 ))/2)∫cos t sin t dt+((s_2 (c_7 s_2 −2c_2 s_7 ))/2)∫sin^2  t dt+((s_2 ^2 s_7 )/2)∫sin^2  t tan t dt  ...now it′s easy to solve:  ∫cos^2  t dt=(1/2)∫(1+cos 2t)dt=(1/2)t+(1/4)sin 2t  ∫cos t sin t dt=(1/2)∫sin 2t dt=−(1/4)cos 2t  ∫sin^2  t dt=(1/2)∫(1−cos 2t)dt=(1/2)t−(1/4)sin 2t  ∫sin^2  t tan t dt=∫(tan t −cos t sin t)dt=  =∫tan t dt−∫cos t sin t dt=−ln cos t +(1/4)cos 2t  now re−substitute t=2x−7 and finally  add the constant factors and it′s done

$$\int\frac{\mathrm{cos}^{\mathrm{2}} \:\left(\mathrm{2}{x}−\mathrm{5}\right)\:\mathrm{cos}\:\left(\mathrm{2}{x}−\mathrm{14}\right)}{\mathrm{cos}\:\left(\mathrm{2}{x}−\mathrm{7}\right)}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{2}{x}−\mathrm{7}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{2}}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{cos}^{\mathrm{2}} \:\left({t}+\mathrm{2}\right)\:\mathrm{cos}\:\left({t}−\mathrm{7}\right)}{\mathrm{cos}\:\left({t}\right)}{dt}= \\ $$$$\:\:\:\:\:\left[\mathrm{use}\:\mathrm{these}:\right. \\ $$$$\:\:\:\:\:\:\mathrm{cos}^{\mathrm{2}} \:\left({t}+\mathrm{2}\right)\:=\left(\mathrm{cos}\:\mathrm{2}\:\mathrm{cos}\:{t}\:−\mathrm{sin}\:\mathrm{2}\:\mathrm{sin}\:{t}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\mathrm{cos}\:\left({t}−\mathrm{7}\right)\:=\mathrm{cos}\:\mathrm{7}\:\mathrm{cos}\:{t}\:+\mathrm{sin}\:\mathrm{7}\:\mathrm{sin}\:{t} \\ $$$$\left.\:\:\:\:\:\:\mathrm{let}\:\mathrm{me}\:\mathrm{write}\:{c}_{\alpha} ,\:{s}_{\alpha} \:\mathrm{for}\:\mathrm{cos}\:\alpha,\:\mathrm{sin}\:\alpha\right] \\ $$$$=\frac{{c}_{\mathrm{2}} ^{\mathrm{2}} {c}_{\mathrm{7}} }{\mathrm{2}}\int\mathrm{cos}^{\mathrm{2}} \:{t}\:{dt}+\frac{{c}_{\mathrm{2}} \left({c}_{\mathrm{2}} {s}_{\mathrm{7}} −\mathrm{2}{c}_{\mathrm{7}} {s}_{\mathrm{2}} \right)}{\mathrm{2}}\int\mathrm{cos}\:{t}\:\mathrm{sin}\:{t}\:{dt}+\frac{{s}_{\mathrm{2}} \left({c}_{\mathrm{7}} {s}_{\mathrm{2}} −\mathrm{2}{c}_{\mathrm{2}} {s}_{\mathrm{7}} \right)}{\mathrm{2}}\int\mathrm{sin}^{\mathrm{2}} \:{t}\:{dt}+\frac{{s}_{\mathrm{2}} ^{\mathrm{2}} {s}_{\mathrm{7}} }{\mathrm{2}}\int\mathrm{sin}^{\mathrm{2}} \:{t}\:\mathrm{tan}\:{t}\:{dt} \\ $$$$...\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}: \\ $$$$\int\mathrm{cos}^{\mathrm{2}} \:{t}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}+\mathrm{cos}\:\mathrm{2}{t}\right){dt}=\frac{\mathrm{1}}{\mathrm{2}}{t}+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{2}{t} \\ $$$$\int\mathrm{cos}\:{t}\:\mathrm{sin}\:{t}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{sin}\:\mathrm{2}{t}\:{dt}=−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\:\mathrm{2}{t} \\ $$$$\int\mathrm{sin}^{\mathrm{2}} \:{t}\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}{t}\right){dt}=\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{2}{t} \\ $$$$\int\mathrm{sin}^{\mathrm{2}} \:{t}\:\mathrm{tan}\:{t}\:{dt}=\int\left(\mathrm{tan}\:{t}\:−\mathrm{cos}\:{t}\:\mathrm{sin}\:{t}\right){dt}= \\ $$$$=\int\mathrm{tan}\:{t}\:{dt}−\int\mathrm{cos}\:{t}\:\mathrm{sin}\:{t}\:{dt}=−\mathrm{ln}\:\mathrm{cos}\:{t}\:+\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\:\mathrm{2}{t} \\ $$$$\mathrm{now}\:\mathrm{re}−\mathrm{substitute}\:{t}=\mathrm{2}{x}−\mathrm{7}\:\mathrm{and}\:\mathrm{finally} \\ $$$$\mathrm{add}\:\mathrm{the}\:\mathrm{constant}\:\mathrm{factors}\:\mathrm{and}\:\mathrm{it}'\mathrm{s}\:\mathrm{done} \\ $$

Commented by Tawa1 last updated on 30/May/19

Ohh.  I just saw it now sir. God bless you sir.     I will appreciate if you can help me finish up sir.      When you are less busy,   i will study it.  Thanks sir for your help.

$$\mathrm{Ohh}.\:\:\mathrm{I}\:\mathrm{just}\:\mathrm{saw}\:\mathrm{it}\:\mathrm{now}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$$$\:\:\:\mathrm{I}\:\mathrm{will}\:\mathrm{appreciate}\:\mathrm{if}\:\mathrm{you}\:\mathrm{can}\:\mathrm{help}\:\mathrm{me}\:\mathrm{finish}\:\mathrm{up}\:\mathrm{sir}. \\ $$$$\:\:\:\:\mathrm{When}\:\mathrm{you}\:\mathrm{are}\:\mathrm{less}\:\mathrm{busy},\:\:\:\mathrm{i}\:\mathrm{will}\:\mathrm{study}\:\mathrm{it}.\:\:\mathrm{Thanks}\:\mathrm{sir}\:\mathrm{for}\:\mathrm{your}\:\mathrm{help}. \\ $$

Commented by MJS last updated on 30/May/19

did a few steps more...

$$\mathrm{did}\:\mathrm{a}\:\mathrm{few}\:\mathrm{steps}\:\mathrm{more}... \\ $$

Commented by Tawa1 last updated on 30/May/19

Yes, i get it now. God bless you more .  I appreciate.

$$\mathrm{Yes},\:\mathrm{i}\:\mathrm{get}\:\mathrm{it}\:\mathrm{now}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}\:.\:\:\mathrm{I}\:\mathrm{appreciate}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com