Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 61178 by mathsolverby Abdo last updated on 30/May/19

solve (1+x^2 )y^′  +(1−x^2 )y =x e^(−3x)

solve(1+x2)y+(1x2)y=xe3x

Commented by maxmathsup by imad last updated on 31/May/19

(he)→(1+x^2 )y^′  +(1−x^2 )y =0 ⇒(1+x^2 )y^′  =(x^2 −1)y ⇒  (y^′ /y) =((x^2 −1)/(x^2  +1)) ⇒ln∣y∣ =∫  ((x^2 −1)/(x^2  +1)) dx +c  =∫ ((x^2 +1−2)/(x^2  +1)) dx +c =x−2arctan(x)+c ⇒  y(x) =K e^(x−2arctan(x))     mvc method give  y^′  =K^′  e^(x−2arctan(x))  +K (1−(2/(1+x^2 )))e^(x−2arctan(x))   =(K^′  +K((x^2 −1)/(x^2  +2)))e^(x−2arctan(x))   (e)⇒(1+x^2 )K^′  e^(x−2arctan(x))  +K(x^2 −1) e^(x−2arctan(x))   +(1−x^2 )K e^(x−2arctan(x))  =x e^(−3x)  ⇒  (1+x^2 )K^′  e^(x−2arctan(x))  =x e^(−3x)  ⇒K^′  =(x/(1+x^2 )) e^(−3x−x +2arctan(x))   =(x/(1+x^2 )) e^(−4x +2arctan(x)) ⇒K(x) =∫  ((x e^(−4x +2arctan(x)) )/(1+x^2 )) dx +λ⇒  y(x) =( ∫  ((x e^(−4x +2arctan(x)) )/(1+x^2 ))dx +λ)e^(x−2arctan(x))   =λ e^(x−2arctan(x))   +e^(x−2arctan(x))  ∫_. ^x    ((t e^(−4t +2arctan(t)) )/(1+t^2 )) dt  ( λ ∈R).

(he)(1+x2)y+(1x2)y=0(1+x2)y=(x21)yyy=x21x2+1lny=x21x2+1dx+c=x2+12x2+1dx+c=x2arctan(x)+cy(x)=Kex2arctan(x)mvcmethodgivey=Kex2arctan(x)+K(121+x2)ex2arctan(x)=(K+Kx21x2+2)ex2arctan(x)(e)(1+x2)Kex2arctan(x)+K(x21)ex2arctan(x)+(1x2)Kex2arctan(x)=xe3x(1+x2)Kex2arctan(x)=xe3xK=x1+x2e3xx+2arctan(x)=x1+x2e4x+2arctan(x)K(x)=xe4x+2arctan(x)1+x2dx+λy(x)=(xe4x+2arctan(x)1+x2dx+λ)ex2arctan(x)=λex2arctan(x)+ex2arctan(x).xte4t+2arctan(t)1+t2dt(λR).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com