Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 61211 by alphaprime last updated on 30/May/19

Solve for x in terms of a   (√(a−(√(a+x )))) +  (√(a+(√(a−x)))) = 2x  Please sir i request you to solve this   question =_=

$${Solve}\:{for}\:{x}\:{in}\:{terms}\:{of}\:{a}\: \\ $$$$\sqrt{{a}−\sqrt{{a}+{x}\:}}\:+\:\:\sqrt{{a}+\sqrt{{a}−{x}}}\:=\:\mathrm{2}{x} \\ $$$${Please}\:{sir}\:{i}\:{request}\:{you}\:{to}\:{solve}\:{this}\: \\ $$$${question}\:=\_= \\ $$

Commented by maxmathsup by imad last updated on 30/May/19

first  x∈[0,a]   a−(√(a+x))=u  and a+(√(a−x))=v ⇒  (√(a−x))−(√(a+x ))=v−u ⇒ a−x +a+x −2(√(a^2 −x^2 ))=(u−v)^2  ⇒  2a−2(√(a^2 −x^2 ))=(u−v)^2  ⇒2(√(a^2 −x^2 ))=2a−(u−v)^2  ⇒  (√(a^2 −x^2 ))=a−(((u−v)^2 )/2) ⇒a^2 −x^2  =(((2a−(u−v)^2 )/2))^2  ⇒  x^2  =a^2  −(1/4)(2a−(u−v)^2 )^2  =((4a^2 −(4a^2 −4a(u−v)^2  +(u−v)^4 ))/4)  =((4a(u−v)^2 −(u−v)^4 )/4) ⇒x =(1/2)(√(4a(u−v)^2 −(u−v)^4 ))  =((∣u−v∣)/2)(√(4a−(u−v)^2 ))  (e) ⇒(√u) +(√v) =∣u−v∣(√(4a−(u−v)^2 )) ⇒  u+v +2uv =(u^2 −2uv +v^2 )(4a−(u−v)^2 ) ⇒  u+v +2uv =(u^2 −2uv +v^2 )(4a−u^2 −v^2  +2uv.....be continued...

$${first}\:\:{x}\in\left[\mathrm{0},{a}\right]\:\:\:{a}−\sqrt{{a}+{x}}={u}\:\:{and}\:{a}+\sqrt{{a}−{x}}={v}\:\Rightarrow \\ $$$$\sqrt{{a}−{x}}−\sqrt{{a}+{x}\:}={v}−{u}\:\Rightarrow\:{a}−{x}\:+{a}+{x}\:−\mathrm{2}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\left({u}−{v}\right)^{\mathrm{2}} \:\Rightarrow \\ $$$$\mathrm{2}{a}−\mathrm{2}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\left({u}−{v}\right)^{\mathrm{2}} \:\Rightarrow\mathrm{2}\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\mathrm{2}{a}−\left({u}−{v}\right)^{\mathrm{2}} \:\Rightarrow \\ $$$$\sqrt{{a}^{\mathrm{2}} −{x}^{\mathrm{2}} }={a}−\frac{\left({u}−{v}\right)^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow{a}^{\mathrm{2}} −{x}^{\mathrm{2}} \:=\left(\frac{\mathrm{2}{a}−\left({u}−{v}\right)^{\mathrm{2}} }{\mathrm{2}}\right)^{\mathrm{2}} \:\Rightarrow \\ $$$${x}^{\mathrm{2}} \:={a}^{\mathrm{2}} \:−\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}{a}−\left({u}−{v}\right)^{\mathrm{2}} \right)^{\mathrm{2}} \:=\frac{\mathrm{4}{a}^{\mathrm{2}} −\left(\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{a}\left({u}−{v}\right)^{\mathrm{2}} \:+\left({u}−{v}\right)^{\mathrm{4}} \right)}{\mathrm{4}} \\ $$$$=\frac{\mathrm{4}{a}\left({u}−{v}\right)^{\mathrm{2}} −\left({u}−{v}\right)^{\mathrm{4}} }{\mathrm{4}}\:\Rightarrow{x}\:=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{4}{a}\left({u}−{v}\right)^{\mathrm{2}} −\left({u}−{v}\right)^{\mathrm{4}} } \\ $$$$=\frac{\mid{u}−{v}\mid}{\mathrm{2}}\sqrt{\mathrm{4}{a}−\left({u}−{v}\right)^{\mathrm{2}} } \\ $$$$\left({e}\right)\:\Rightarrow\sqrt{{u}}\:+\sqrt{{v}}\:=\mid{u}−{v}\mid\sqrt{\mathrm{4}{a}−\left({u}−{v}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${u}+{v}\:+\mathrm{2}{uv}\:=\left({u}^{\mathrm{2}} −\mathrm{2}{uv}\:+{v}^{\mathrm{2}} \right)\left(\mathrm{4}{a}−\left({u}−{v}\right)^{\mathrm{2}} \right)\:\Rightarrow \\ $$$${u}+{v}\:+\mathrm{2}{uv}\:=\left({u}^{\mathrm{2}} −\mathrm{2}{uv}\:+{v}^{\mathrm{2}} \right)\left(\mathrm{4}{a}−{u}^{\mathrm{2}} −{v}^{\mathrm{2}} \:+\mathrm{2}{uv}.....{be}\:{continued}...\right. \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 30/May/19

perhaps sir mjs or sir mrw can find something with this...

$${perhaps}\:{sir}\:{mjs}\:{or}\:{sir}\:{mrw}\:{can}\:{find}\:{something}\:{with}\:{this}... \\ $$

Commented by behi83417@gmail.com last updated on 31/May/19

sir! i have some treis on this Q.  you can see my works in Q#50511

$$\mathrm{sir}!\:\mathrm{i}\:\mathrm{have}\:\mathrm{some}\:\mathrm{treis}\:\mathrm{on}\:\mathrm{this}\:\mathrm{Q}. \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{see}\:\mathrm{my}\:\mathrm{works}\:\mathrm{in}\:\mathrm{Q}#\mathrm{50511} \\ $$

Answered by MJS last updated on 30/May/19

squaring a few times leads to  [t=x^2 ]  t^6 −4at^5 +((a(12a−1))/2)t^4 −((128a^3 −16a^2 −17)/(32))t^3 +((a(16a^3 +8a^2 −7a−5))/(16))t^2 −((a(64a^3 −48a^2 −4a−7))/(128))t+((256a^4 −256a^3 −32a^2 +1)/(4096))=0  which cannot be solved exactly for t  or  a^4 −((16t^2 +2t−1)/(4t−1))a^3 +((768t^4 +64t^3 −56t^2 +4t−1)/(8(16t^2 −8t+1)))a^2 −((t(512t^4 +64t^3 +40t−7))/(8(16t^2 −8t+1)))a+((4096t^6 +2176t^3 +1)/(256(16t^2 −8t+1)))=0  which can be solved exactly for a using  Ferrari′s formula with a hugh amount of  devotion    in both cases we get invalid solutions because  of squaring. in fact, for given a only one t  exists if that...

$$\mathrm{squaring}\:\mathrm{a}\:\mathrm{few}\:\mathrm{times}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\left[{t}={x}^{\mathrm{2}} \right] \\ $$$${t}^{\mathrm{6}} −\mathrm{4}{at}^{\mathrm{5}} +\frac{{a}\left(\mathrm{12}{a}−\mathrm{1}\right)}{\mathrm{2}}{t}^{\mathrm{4}} −\frac{\mathrm{128}{a}^{\mathrm{3}} −\mathrm{16}{a}^{\mathrm{2}} −\mathrm{17}}{\mathrm{32}}{t}^{\mathrm{3}} +\frac{{a}\left(\mathrm{16}{a}^{\mathrm{3}} +\mathrm{8}{a}^{\mathrm{2}} −\mathrm{7}{a}−\mathrm{5}\right)}{\mathrm{16}}{t}^{\mathrm{2}} −\frac{{a}\left(\mathrm{64}{a}^{\mathrm{3}} −\mathrm{48}{a}^{\mathrm{2}} −\mathrm{4}{a}−\mathrm{7}\right)}{\mathrm{128}}{t}+\frac{\mathrm{256}{a}^{\mathrm{4}} −\mathrm{256}{a}^{\mathrm{3}} −\mathrm{32}{a}^{\mathrm{2}} +\mathrm{1}}{\mathrm{4096}}=\mathrm{0} \\ $$$$\mathrm{which}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{exactly}\:\mathrm{for}\:{t} \\ $$$$\mathrm{or} \\ $$$${a}^{\mathrm{4}} −\frac{\mathrm{16}{t}^{\mathrm{2}} +\mathrm{2}{t}−\mathrm{1}}{\mathrm{4}{t}−\mathrm{1}}{a}^{\mathrm{3}} +\frac{\mathrm{768}{t}^{\mathrm{4}} +\mathrm{64}{t}^{\mathrm{3}} −\mathrm{56}{t}^{\mathrm{2}} +\mathrm{4}{t}−\mathrm{1}}{\mathrm{8}\left(\mathrm{16}{t}^{\mathrm{2}} −\mathrm{8}{t}+\mathrm{1}\right)}{a}^{\mathrm{2}} −\frac{{t}\left(\mathrm{512}{t}^{\mathrm{4}} +\mathrm{64}{t}^{\mathrm{3}} +\mathrm{40}{t}−\mathrm{7}\right)}{\mathrm{8}\left(\mathrm{16}{t}^{\mathrm{2}} −\mathrm{8}{t}+\mathrm{1}\right)}{a}+\frac{\mathrm{4096}{t}^{\mathrm{6}} +\mathrm{2176}{t}^{\mathrm{3}} +\mathrm{1}}{\mathrm{256}\left(\mathrm{16}{t}^{\mathrm{2}} −\mathrm{8}{t}+\mathrm{1}\right)}=\mathrm{0} \\ $$$$\mathrm{which}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{exactly}\:\mathrm{for}\:{a}\:\mathrm{using} \\ $$$$\mathrm{Ferrari}'\mathrm{s}\:\mathrm{formula}\:\mathrm{with}\:\mathrm{a}\:\mathrm{hugh}\:\mathrm{amount}\:\mathrm{of} \\ $$$$\mathrm{devotion} \\ $$$$ \\ $$$$\mathrm{in}\:\mathrm{both}\:\mathrm{cases}\:\mathrm{we}\:\mathrm{get}\:\mathrm{invalid}\:\mathrm{solutions}\:\mathrm{because} \\ $$$$\mathrm{of}\:\mathrm{squaring}.\:\mathrm{in}\:\mathrm{fact},\:\mathrm{for}\:\mathrm{given}\:{a}\:\mathrm{only}\:\mathrm{one}\:{t} \\ $$$$\mathrm{exists}\:\mathrm{if}\:\mathrm{that}... \\ $$

Commented by alphaprime last updated on 30/May/19

Thank you both sir at least you shown interest in the question and I hope we one day get solutions to it . completely.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com