Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 61235 by ajfour last updated on 30/May/19

Commented by ajfour last updated on 30/May/19

Find h and R of maximum volume   inscribed cylinder with its base on  face ABC of a general pyramid.

$${Find}\:{h}\:{and}\:{R}\:{of}\:{maximum}\:{volume} \\ $$$$\:{inscribed}\:{cylinder}\:{with}\:{its}\:{base}\:{on} \\ $$$${face}\:{ABC}\:{of}\:{a}\:{general}\:{pyramid}. \\ $$

Commented by mr W last updated on 30/May/19

Area of base A_b :   A_b =(1/4)(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))  Volume of pyramid V_p :  V_p =(1/(12))(√(Σa^2 p^2 (−a^2 −p^2 +b^2 +q^2 +c^2 +r^2 )−Σa^2 b^2 c^2 ))  Height of pyramid H:  H=((3V_p )/A_b )  Section triangle at height h:  a_1 =(1−(h/H))a  b_1 =(1−(h/H))b  c_1 =(1−(h/H))c  radius of inscribed circle in section:  R=((2A_1 )/p_1 )  with A_1 =area of section triangle  p_1 =perimeter of section triangle  A_1 =(1−(h/H))^2 A_b   p_1 =(1−(h/H))p_b  with p_b =a+b+c  ⇒R=2(1−(h/H))(A_b /p_b )  Volume of inscribed cylinder V_c :  V_c =πR^2 h=((4πA_b ^2 )/p_b ^2 )(1−(h/H))^2 h  =((4πA_b ^2 H)/p_b ^2 )(1−λ)^2 λ with λ=(h/H)  (dV_c /dh)=0  ⇒(1−λ)^2 −2(1−λ)λ=0  ⇒1−3λ=0  ⇒λ=(1/3)  i.e. for maximum volume of cylinder  h=(H/3)=(V_p /A_b )=(1/3)(√((Σa^2 p^2 (−a^2 −p^2 +b^2 +q^2 +c^2 +r^2 )−Σa^2 b^2 c^2 )/((a+b+c)(−a+b+c)(a−b+c)(a+b−c))))  R=((4A_b )/(3p_b ))=(1/3)(√(((−a+b+c)(a−b+c)(a+b−c))/((a+b+c))))

$${Area}\:{of}\:{base}\:{A}_{{b}} :\: \\ $$$${A}_{{b}} =\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)} \\ $$$${Volume}\:{of}\:{pyramid}\:{V}_{{p}} : \\ $$$${V}_{{p}} =\frac{\mathrm{1}}{\mathrm{12}}\sqrt{\Sigma{a}^{\mathrm{2}} {p}^{\mathrm{2}} \left(−{a}^{\mathrm{2}} −{p}^{\mathrm{2}} +{b}^{\mathrm{2}} +{q}^{\mathrm{2}} +{c}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)−\Sigma{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} } \\ $$$${Height}\:{of}\:{pyramid}\:{H}: \\ $$$${H}=\frac{\mathrm{3}{V}_{{p}} }{{A}_{{b}} } \\ $$$${Section}\:{triangle}\:{at}\:{height}\:{h}: \\ $$$${a}_{\mathrm{1}} =\left(\mathrm{1}−\frac{{h}}{{H}}\right){a} \\ $$$${b}_{\mathrm{1}} =\left(\mathrm{1}−\frac{{h}}{{H}}\right){b} \\ $$$${c}_{\mathrm{1}} =\left(\mathrm{1}−\frac{{h}}{{H}}\right){c} \\ $$$${radius}\:{of}\:{inscribed}\:{circle}\:{in}\:{section}: \\ $$$${R}=\frac{\mathrm{2}{A}_{\mathrm{1}} }{{p}_{\mathrm{1}} } \\ $$$${with}\:{A}_{\mathrm{1}} ={area}\:{of}\:{section}\:{triangle} \\ $$$${p}_{\mathrm{1}} ={perimeter}\:{of}\:{section}\:{triangle} \\ $$$${A}_{\mathrm{1}} =\left(\mathrm{1}−\frac{{h}}{{H}}\right)^{\mathrm{2}} {A}_{{b}} \\ $$$${p}_{\mathrm{1}} =\left(\mathrm{1}−\frac{{h}}{{H}}\right){p}_{{b}} \:{with}\:{p}_{{b}} ={a}+{b}+{c} \\ $$$$\Rightarrow{R}=\mathrm{2}\left(\mathrm{1}−\frac{{h}}{{H}}\right)\frac{{A}_{{b}} }{{p}_{{b}} } \\ $$$${Volume}\:{of}\:{inscribed}\:{cylinder}\:{V}_{{c}} : \\ $$$${V}_{{c}} =\pi{R}^{\mathrm{2}} {h}=\frac{\mathrm{4}\pi{A}_{{b}} ^{\mathrm{2}} }{{p}_{{b}} ^{\mathrm{2}} }\left(\mathrm{1}−\frac{{h}}{{H}}\right)^{\mathrm{2}} {h} \\ $$$$=\frac{\mathrm{4}\pi{A}_{{b}} ^{\mathrm{2}} {H}}{{p}_{{b}} ^{\mathrm{2}} }\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} \lambda\:{with}\:\lambda=\frac{{h}}{{H}} \\ $$$$\frac{{dV}_{{c}} }{{dh}}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{1}−\lambda\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{1}−\lambda\right)\lambda=\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}−\mathrm{3}\lambda=\mathrm{0} \\ $$$$\Rightarrow\lambda=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${i}.{e}.\:{for}\:{maximum}\:{volume}\:{of}\:{cylinder} \\ $$$${h}=\frac{{H}}{\mathrm{3}}=\frac{{V}_{{p}} }{{A}_{{b}} }=\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\frac{\Sigma{a}^{\mathrm{2}} {p}^{\mathrm{2}} \left(−{a}^{\mathrm{2}} −{p}^{\mathrm{2}} +{b}^{\mathrm{2}} +{q}^{\mathrm{2}} +{c}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)−\Sigma{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} }{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}} \\ $$$${R}=\frac{\mathrm{4}{A}_{{b}} }{\mathrm{3}{p}_{{b}} }=\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\frac{\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}{\left({a}+{b}+{c}\right)}} \\ $$

Commented by ajfour last updated on 31/May/19

Thank you very much Sir,  i think, i′ll have to strive hard  to follow.

$${Thank}\:{you}\:{very}\:{much}\:{Sir}, \\ $$$${i}\:{think},\:{i}'{ll}\:{have}\:{to}\:{strive}\:{hard} \\ $$$${to}\:{follow}. \\ $$

Commented by mr W last updated on 31/May/19

Commented by mr W last updated on 31/May/19

this is the formula for volume of  a pyramid with given edge lengthes.  [acc. to post from MJS sir]

$${this}\:{is}\:{the}\:{formula}\:{for}\:{volume}\:{of} \\ $$$${a}\:{pyramid}\:{with}\:{given}\:{edge}\:{lengthes}. \\ $$$$\left[{acc}.\:{to}\:{post}\:{from}\:{MJS}\:{sir}\right] \\ $$

Commented by ajfour last updated on 31/May/19

okay Sir.

$${okay}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com