Question and Answers Forum

All Questions      Topic List

Vector Calculus Questions

Previous in All Question      Next in All Question      

Previous in Vector Calculus      Next in Vector Calculus      

Question Number 61258 by cesar.marval.larez@gmail.com last updated on 31/May/19

Calculate, using cartesian coodinates, the following  integrals:    1) ∫∫_D dxdy  being  D={ (x,y)∈R^2 /0≤x≤(1/2),y+x≤1,y≥0}  2) ∫∫_D x^3 ydxdy  being D={(x,y)∈R^2 /0≤x≤(1/2),y+x≤1,y≥0}  3) ∫∫_D (x/y)dxdy  being D={(x,y)∈R^2 /xy≤16,x≥y,x−6≤y,x≥0,y≥1}    Help  please!

Calculate,usingcartesiancoodinates,thefollowingintegrals:1)DdxdybeingD={(x,y)R2/0x12,y+x1,y0}2)Dx3ydxdybeingD={(x,y)R2/0x12,y+x1,y0}3)DxydxdybeingD={(x,y)R2/xy16,xy,x6y,x0,y1}Helpplease!

Commented by abdo mathsup 649 cc last updated on 31/May/19

1) ∫∫ dxdy =∫_0 ^(1/2)  (∫_0 ^(1−x) dy)dx  =∫_0 ^(1/2) (1−x)dx =[x−(x^2 /2)]_0 ^(1/2) =(1/2) −(1/8) =((4−1)/8) =(3/8) .

1)dxdy=012(01xdy)dx=012(1x)dx=[xx22]012=1218=418=38.

Commented by abdo mathsup 649 cc last updated on 31/May/19

2) ∫∫ x^3 y dxdy =∫_0 ^(1/2)  (∫_0 ^(1−x) ydy)x^3 dx  =∫_0 ^(1/2)  ([(y^2 /2)]_0 ^(1−x) )x^3 dx =(1/2) ∫_0 ^(1/2) (x−1)^2 x^3  dx  =(1/2) ∫_0 ^(1/2) (x^2 −2x+1)x^3  dx  =(1/2) ∫_0 ^(1/2)  (x^5 −2x^4  +x^3 )dx  =(1/2)[(x^6 /6) −(2/5) x^5  +(x^4 /4)]_0 ^(1/2)   =(1/2){ (1/(6.2^6 )) −(2/(5.2^5 )) +(1/2^4 )} =....

2)x3ydxdy=012(01xydy)x3dx=012([y22]01x)x3dx=12012(x1)2x3dx=12012(x22x+1)x3dx=12012(x52x4+x3)dx=12[x6625x5+x44]012=12{16.2625.25+124}=....

Answered by perlman last updated on 31/May/19

3)D=[(x,y).xy<16,x>y.x−6<y.x>0.y>1]  =D_1 [(x,y). 1<y<x.1<x<4]∪D_2 [(x.y) 1<y<((16)/x).4<x<3+(√((30)))]  ∫∫_(D1∪D2) f(x,y)dxdy=∫∫_(D1) f(x,y)dxdy+∫∫_(D2) f(x,y)dxdy if D1∩D2=∅  mor generaly is= if  ∫∫_(D1∩D2) f(x,y)dxdy=0 “theorie of integration”  So we integrate over D1 +integration over D_2   over D_1 =∫_1 ^4 (∫_1 ^x (x/y)dy)dx=∫_1 ^4 [xln(y)]_1 ^x dx=∫_1 ^4 (xln(x))dx  =[(x^2 /2)ln(x)]_1 ^4 −∫_1 ^4 (x/2)dx=2ln(4)−[(x^2 /4)]_1 ^4 =2ln(4)−4+(1/4)=2ln(4)−((15)/4)  ∫_4 ^(3+(√((30)))) ∫_1 ^((16)/x) (x/y)dydx=∫_4 ^(3+(√((30)))) xln(((16)/x))dx=∫_4 ^(3+(√((30)))) xln(16)dx−∫_4 ^(3+(√((30)))) xln(x)dx  =[x^2 ln(16)]_4 ^(3+(√(30))) −[(x^2 /2)ln(x)−(x^2 /4)]_4 ^(3+(√(30)))

3)D=[(x,y).xy<16,x>y.x6<y.x>0.y>1]=D1[(x,y).1<y<x.1<x<4]D2[(x.y)1<y<16x.4<x<3+(30)]D1D2f(x,y)dxdy=D1f(x,y)dxdy+D2f(x,y)dxdyifD1D2=morgeneralyis=ifD1D2f(x,y)dxdy=0theorieofintegrationSoweintegrateoverD1+integrationoverD2overD1=14(1xxydy)dx=14[xln(y)]1xdx=14(xln(x))dx=[x22ln(x)]1414x2dx=2ln(4)[x24]14=2ln(4)4+14=2ln(4)15443+(30)116xxydydx=43+(30)xln(16x)dx=43+(30)xln(16)dx43+(30)xln(x)dx=[x2ln(16)]43+30[x22ln(x)x24]43+30

Commented by cesar.marval.larez@gmail.com last updated on 31/May/19

Haven′t graph?

Haventgraph?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com