Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 61269 by alphaprime last updated on 31/May/19

Let p(x) be a quadratic polynomial such  that for distinct α and β ,  p(α) = α and p(β) =β  prove that α and β are roots of  p[p(x)]−x=0   Find the remaining roots .

$${Let}\:{p}\left({x}\right)\:{be}\:{a}\:{quadratic}\:{polynomial}\:{such} \\ $$$${that}\:{for}\:{distinct}\:\alpha\:{and}\:\beta\:, \\ $$$${p}\left(\alpha\right)\:=\:\alpha\:{and}\:{p}\left(\beta\right)\:=\beta \\ $$$${prove}\:{that}\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\:\:{p}\left[{p}\left({x}\right)\right]−{x}=\mathrm{0}\: \\ $$$${Find}\:{the}\:{remaining}\:{roots}\:. \\ $$

Answered by ajfour last updated on 31/May/19

p(x)=a(x−h)^2 +k  α, β are roots of    a(r−h)^2 −r+k=0       ...(i)  p[p(x)]−x=a{a(x−h)^2 +k−h}^2 +k−x  And since from (i)       a(r−h)^2 +k=r     ....(ii)  p[p(r)]−r=a{a(x−r)^2 +k−h}^2 −r+k  using (ii) we get  p[p(r)]−r=a{r−h}^2 −r+k                       =0     using (i)  hence α,β are roots of p[p(x)]−x=0 .  Again  p[p(x)]−x=a{a(x−h)^2 +k−h}^2 +k−x  or  = a^3 (x−h)^4 +2a^2 (k−h)(x−h)^2                   +a(k−h)^2 +k−x    =a^3 x^4 −4a^3 hx^3 +[6a^3 h^2 +2a^2 (k−h)]x^2         −[4a^3 h^3 −+4a^2 h(k−h)+1]x   +a^3 h^4 +2a^2 (k−h)h^2 +a(k−h)^2 +k  Also lets assume  p[p(x)]−x=a^3 [x^2 −(2ah+1)x+h^2 +(k/a)](x−γ)(x−δ)    =a^3 {x^4 −(γ+δ+2ah+1)x^3            +[γδ+(2ah+1)(γ+δ)+h^2 +(k/a)]x^2             +(h^2 +(k/a))γδ}  comparing the two expressions  for  p[p(x)]−x  we conclude     γ+δ = 4h−2ah−1   γδ(h^2 +(k/a))=a^3 h^4 +2a^2 (k−h)h^2 +a(k−h)^2 +k  but from (i)       2h+(1/a)=α+β      h^2 +(k/a)=αβ  .....

$${p}\left({x}\right)={a}\left({x}−{h}\right)^{\mathrm{2}} +{k} \\ $$$$\alpha,\:\beta\:{are}\:{roots}\:{of} \\ $$$$\:\:{a}\left({r}−{h}\right)^{\mathrm{2}} −{r}+{k}=\mathrm{0}\:\:\:\:\:\:\:...\left({i}\right) \\ $$$${p}\left[{p}\left({x}\right)\right]−{x}={a}\left\{{a}\left({x}−{h}\right)^{\mathrm{2}} +{k}−{h}\right\}^{\mathrm{2}} +{k}−{x} \\ $$$${And}\:{since}\:{from}\:\left({i}\right) \\ $$$$\:\:\:\:\:{a}\left({r}−{h}\right)^{\mathrm{2}} +{k}={r}\:\:\:\:\:....\left({ii}\right) \\ $$$${p}\left[{p}\left({r}\right)\right]−{r}={a}\left\{{a}\left({x}−{r}\right)^{\mathrm{2}} +{k}−{h}\right\}^{\mathrm{2}} −{r}+{k} \\ $$$${using}\:\left({ii}\right)\:{we}\:{get} \\ $$$${p}\left[{p}\left({r}\right)\right]−{r}={a}\left\{{r}−{h}\right\}^{\mathrm{2}} −{r}+{k} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{0}\:\:\:\:\:{using}\:\left({i}\right) \\ $$$${hence}\:\alpha,\beta\:{are}\:{roots}\:{of}\:{p}\left[{p}\left({x}\right)\right]−{x}=\mathrm{0}\:. \\ $$$${Again} \\ $$$${p}\left[{p}\left({x}\right)\right]−{x}={a}\left\{{a}\left({x}−{h}\right)^{\mathrm{2}} +{k}−{h}\right\}^{\mathrm{2}} +{k}−{x} \\ $$$${or}\:\:=\:{a}^{\mathrm{3}} \left({x}−{h}\right)^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} \left({k}−{h}\right)\left({x}−{h}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{a}\left({k}−{h}\right)^{\mathrm{2}} +{k}−{x} \\ $$$$\:\:={a}^{\mathrm{3}} {x}^{\mathrm{4}} −\mathrm{4}{a}^{\mathrm{3}} {hx}^{\mathrm{3}} +\left[\mathrm{6}{a}^{\mathrm{3}} {h}^{\mathrm{2}} +\mathrm{2}{a}^{\mathrm{2}} \left({k}−{h}\right)\right]{x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:−\left[\mathrm{4}{a}^{\mathrm{3}} {h}^{\mathrm{3}} −+\mathrm{4}{a}^{\mathrm{2}} {h}\left({k}−{h}\right)+\mathrm{1}\right]{x} \\ $$$$\:+{a}^{\mathrm{3}} {h}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} \left({k}−{h}\right){h}^{\mathrm{2}} +{a}\left({k}−{h}\right)^{\mathrm{2}} +{k} \\ $$$${Also}\:{lets}\:{assume} \\ $$$${p}\left[{p}\left({x}\right)\right]−{x}={a}^{\mathrm{3}} \left[{x}^{\mathrm{2}} −\left(\mathrm{2}{ah}+\mathrm{1}\right){x}+{h}^{\mathrm{2}} +\frac{{k}}{{a}}\right]\left({x}−\gamma\right)\left({x}−\delta\right) \\ $$$$\:\:={a}^{\mathrm{3}} \left\{{x}^{\mathrm{4}} −\left(\gamma+\delta+\mathrm{2}{ah}+\mathrm{1}\right){x}^{\mathrm{3}} \right. \\ $$$$\:\:\:\:\:\:\:\:\:+\left[\gamma\delta+\left(\mathrm{2}{ah}+\mathrm{1}\right)\left(\gamma+\delta\right)+{h}^{\mathrm{2}} +\frac{{k}}{{a}}\right]{x}^{\mathrm{2}} \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:+\left({h}^{\mathrm{2}} +\frac{{k}}{{a}}\right)\gamma\delta\right\} \\ $$$${comparing}\:{the}\:{two}\:{expressions} \\ $$$${for}\:\:{p}\left[{p}\left({x}\right)\right]−{x}\:\:{we}\:{conclude} \\ $$$$\:\:\:\gamma+\delta\:=\:\mathrm{4}{h}−\mathrm{2}{ah}−\mathrm{1} \\ $$$$\:\gamma\delta\left({h}^{\mathrm{2}} +\frac{{k}}{{a}}\right)={a}^{\mathrm{3}} {h}^{\mathrm{4}} +\mathrm{2}{a}^{\mathrm{2}} \left({k}−{h}\right){h}^{\mathrm{2}} +{a}\left({k}−{h}\right)^{\mathrm{2}} +{k} \\ $$$${but}\:{from}\:\left({i}\right) \\ $$$$\:\:\:\:\:\mathrm{2}{h}+\frac{\mathrm{1}}{{a}}=\alpha+\beta \\ $$$$\:\:\:\:{h}^{\mathrm{2}} +\frac{{k}}{{a}}=\alpha\beta \\ $$$$..... \\ $$

Answered by perlman last updated on 31/May/19

p(x)=(x−a)(x−b)+x  p[p(x)]=(p(x)−a)(p(x)−b)+p(x)  pp(x) −x=0  ==> (p(x)−a)(p(x)−b)+p(x)−x=0  =((x−a)(x−b)+x−a)((x−a)(x−b)+x−b)+(x−a)(x−b)=0  (x−a)(x−b+1)(x−b)(x−a+1)+(x−a)(x−b)=0  (x−a)(x−b)[(x−b+1)(x−a+1)+1]=0  let solve (x−b+1)(x−a+1)+1=0  x^2 −(b+a−2)x+(a−1)(b−1)+1=0  Δ=(b+a−2)^2 −4(ab−a−b+2)=(b^2 +a^2 +4+2ba−4a−4b)−4ab+4a+4b−8  =b^2 +a^2 −2ab−4=(b−a−2)(b−a+2)  let b>a we can do this cause a#b  ===>Δ≥0<==>b≥a+2  if b≥a+2  X_(1.2) =(((b+a−2)+_− (√((b−a−2)(b−a+2))))/2)  if a<b<=a+2  X_(1.2) =(((b+a−2)+_− i(√((a+2−b)(b−a+2))))/2)  solution are if b∈]a+2;+∞[ solutions are  {b,a,(((b+a−2)+_− (√((b−a−2)(b−a+2))))/2)}  if b∈]a;a+2[ solutions are  {b,a,(((b+a−2)+_− i(√((b−a−2)(b−a+2))))/2)}

$${p}\left({x}\right)=\left({x}−{a}\right)\left({x}−{b}\right)+{x} \\ $$$${p}\left[{p}\left({x}\right)\right]=\left({p}\left({x}\right)−{a}\right)\left({p}\left({x}\right)−{b}\right)+{p}\left({x}\right) \\ $$$${pp}\left({x}\right)\:−{x}=\mathrm{0} \\ $$$$==>\:\left({p}\left({x}\right)−{a}\right)\left({p}\left({x}\right)−{b}\right)+{p}\left({x}\right)−{x}=\mathrm{0} \\ $$$$=\left(\left({x}−{a}\right)\left({x}−{b}\right)+{x}−{a}\right)\left(\left({x}−{a}\right)\left({x}−{b}\right)+{x}−{b}\right)+\left({x}−{a}\right)\left({x}−{b}\right)=\mathrm{0} \\ $$$$\left({x}−{a}\right)\left({x}−{b}+\mathrm{1}\right)\left({x}−{b}\right)\left({x}−{a}+\mathrm{1}\right)+\left({x}−{a}\right)\left({x}−{b}\right)=\mathrm{0} \\ $$$$\left({x}−{a}\right)\left({x}−{b}\right)\left[\left({x}−{b}+\mathrm{1}\right)\left({x}−{a}+\mathrm{1}\right)+\mathrm{1}\right]=\mathrm{0} \\ $$$${let}\:{solve}\:\left({x}−{b}+\mathrm{1}\right)\left({x}−{a}+\mathrm{1}\right)+\mathrm{1}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\left({b}+{a}−\mathrm{2}\right){x}+\left({a}−\mathrm{1}\right)\left({b}−\mathrm{1}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\Delta=\left({b}+{a}−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}\left({ab}−{a}−{b}+\mathrm{2}\right)=\left({b}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{4}+\mathrm{2}{ba}−\mathrm{4}{a}−\mathrm{4}{b}\right)−\mathrm{4}{ab}+\mathrm{4}{a}+\mathrm{4}{b}−\mathrm{8} \\ $$$$={b}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{ab}−\mathrm{4}=\left({b}−{a}−\mathrm{2}\right)\left({b}−{a}+\mathrm{2}\right) \\ $$$${let}\:{b}>{a}\:{we}\:{can}\:{do}\:{this}\:{cause}\:{a}#{b} \\ $$$$===>\Delta\geqslant\mathrm{0}<==>{b}\geqslant{a}+\mathrm{2} \\ $$$${if}\:{b}\geqslant{a}+\mathrm{2} \\ $$$${X}_{\mathrm{1}.\mathrm{2}} =\frac{\left({b}+{a}−\mathrm{2}\right)\underset{−} {+}\sqrt{\left({b}−{a}−\mathrm{2}\right)\left({b}−{a}+\mathrm{2}\right)}}{\mathrm{2}} \\ $$$${if}\:{a}<{b}<={a}+\mathrm{2} \\ $$$${X}_{\mathrm{1}.\mathrm{2}} =\frac{\left({b}+{a}−\mathrm{2}\right)\underset{−} {+}{i}\sqrt{\left({a}+\mathrm{2}−{b}\right)\left({b}−{a}+\mathrm{2}\right)}}{\mathrm{2}} \\ $$$$\left.{solution}\:{are}\:{if}\:{b}\in\right]{a}+\mathrm{2};+\infty\left[\:{solutions}\:{are}\right. \\ $$$$\left\{{b},{a},\frac{\left({b}+{a}−\mathrm{2}\right)\underset{−} {+}\sqrt{\left({b}−{a}−\mathrm{2}\right)\left({b}−{a}+\mathrm{2}\right)}}{\mathrm{2}}\right\} \\ $$$$\left.{if}\:{b}\in\right]{a};{a}+\mathrm{2}\left[\:{solutions}\:{are}\right. \\ $$$$\left\{{b},{a},\frac{\left({b}+{a}−\mathrm{2}\right)\underset{−} {+}{i}\sqrt{\left({b}−{a}−\mathrm{2}\right)\left({b}−{a}+\mathrm{2}\right)}}{\mathrm{2}}\right\} \\ $$$$ \\ $$

Commented by alphaprime last updated on 31/May/19

Tanmay sir generalized and solution is pretty nice , but yours is valid in entire domain , But comment something on both the solutions , any remarks you wanna add , please ...

Commented by perlman last updated on 31/May/19

i tack p(x)=(x−a)(x−b)+x  but generaly i must tack p=s(x−a)(x−b)+x  withe s constant

$${i}\:{tack}\:{p}\left({x}\right)=\left({x}−{a}\right)\left({x}−{b}\right)+{x} \\ $$$${but}\:{generaly}\:{i}\:{must}\:{tack}\:{p}={s}\left({x}−{a}\right)\left({x}−{b}\right)+{x} \\ $$$${withe}\:{s}\:{constant}\: \\ $$

Commented by alphaprime last updated on 31/May/19

You mentioned it finally , In Tanmay sir's solution It's dependent on the parameter A you've left , which you haven't taken as arbitrary constant, so does it affect his or your solution or neither ones ?! it's amazing

Answered by tanmay last updated on 31/May/19

p(x)=A(x−α)(x−β)+x  p[p(x)]  =A[A(x−α)(x−β)+x−α](A(x−α)(x−β)+x−β]+    A(x−α)(x−β) +x−x  so   p[p(α)]=0  p[p(β)]=0  nxt part...  p[p(x)]  =A[(x−α){A(x−β)+1}][(x−β){A(x−α)+1}]+if      A(x−α)(x−β)  for other two root p[p(x)]=0  x−α=m    x−β=n     A[m(An+1)][n(Am+1]+Amn=0  (Amn+m)(Amn+n)+mn=0  A^2 (mn)^2 +Amn(m+n)+mn+mn=0  mn[A^2 (mn)+A(m+n)+2]=0  when A^2 (mn)+A(m+n)+2=0  A^2 (x−α)(x−β)+A(x−α+x−β)+2=0  A^2 (x^2 −xα−xβ+αβ)+2Ax−A(α+β)+2=0  x^2 (A^2 )+x(2A−A^2 α−A^2 β)+A^2 αβ−A(α+β)+2=0  (Ax+1)^2 +x(−A^2 α−A^2 β)+(A^2 αβ−Aα−Aβ+1)=0  (Ax+1)^2 −A^2 x(α+β)+Aα(Aβ−1)−(Aβ−1)=0  (Ax+1)^2 −A^2 x(α+β)+(Aα−1)(Aβ−1)=0  A^2 x^2 +2Ax+1−A^2 x(α+β)+(Aα−1)(Aβ−1)=0  A^2 x^2 −Ax(α+β−2)+(Aα−1)(Aβ−1)+1=0  x=((A(α+β−2)±(√(A^2 (α+β−2)^2 −4A^2 [(Aα−1)(Aβ−1)+1])))/(2A^2 ))  x=((α+β−2±(√((α+β−2)^2 −4[(Aα−1)(Aβ−1)+1)))/(2A))

$${p}\left({x}\right)={A}\left({x}−\alpha\right)\left({x}−\beta\right)+{x} \\ $$$${p}\left[{p}\left({x}\right)\right] \\ $$$$={A}\left[{A}\left({x}−\alpha\right)\left({x}−\beta\right)+{x}−\alpha\right]\left({A}\left({x}−\alpha\right)\left({x}−\beta\right)+{x}−\beta\right]+ \\ $$$$\:\:{A}\left({x}−\alpha\right)\left({x}−\beta\right)\:+{x}−{x} \\ $$$${so}\: \\ $$$${p}\left[{p}\left(\alpha\right)\right]=\mathrm{0} \\ $$$${p}\left[{p}\left(\beta\right)\right]=\mathrm{0} \\ $$$${nxt}\:{part}... \\ $$$${p}\left[{p}\left({x}\right)\right] \\ $$$$={A}\left[\left({x}−\alpha\right)\left\{{A}\left({x}−\beta\right)+\mathrm{1}\right\}\right]\left[\left({x}−\beta\right)\left\{{A}\left({x}−\alpha\right)+\mathrm{1}\right\}\right]+{if} \\ $$$$\:\:\:\:{A}\left({x}−\alpha\right)\left({x}−\beta\right) \\ $$$${for}\:{other}\:{two}\:{root}\:{p}\left[{p}\left({x}\right)\right]=\mathrm{0} \\ $$$${x}−\alpha={m}\:\:\:\:{x}−\beta={n}\:\:\: \\ $$$${A}\left[{m}\left({An}+\mathrm{1}\right)\right]\left[{n}\left({Am}+\mathrm{1}\right]+{Amn}=\mathrm{0}\right. \\ $$$$\left({Amn}+{m}\right)\left({Amn}+{n}\right)+{mn}=\mathrm{0} \\ $$$${A}^{\mathrm{2}} \left({mn}\right)^{\mathrm{2}} +{Amn}\left({m}+{n}\right)+{mn}+{mn}=\mathrm{0} \\ $$$${mn}\left[{A}^{\mathrm{2}} \left({mn}\right)+{A}\left({m}+{n}\right)+\mathrm{2}\right]=\mathrm{0} \\ $$$${when}\:{A}^{\mathrm{2}} \left({mn}\right)+{A}\left({m}+{n}\right)+\mathrm{2}=\mathrm{0} \\ $$$${A}^{\mathrm{2}} \left({x}−\alpha\right)\left({x}−\beta\right)+{A}\left({x}−\alpha+{x}−\beta\right)+\mathrm{2}=\mathrm{0} \\ $$$${A}^{\mathrm{2}} \left({x}^{\mathrm{2}} −{x}\alpha−{x}\beta+\alpha\beta\right)+\mathrm{2}{Ax}−{A}\left(\alpha+\beta\right)+\mathrm{2}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} \left({A}^{\mathrm{2}} \right)+{x}\left(\mathrm{2}{A}−{A}^{\mathrm{2}} \alpha−{A}^{\mathrm{2}} \beta\right)+{A}^{\mathrm{2}} \alpha\beta−{A}\left(\alpha+\beta\right)+\mathrm{2}=\mathrm{0} \\ $$$$\left({Ax}+\mathrm{1}\right)^{\mathrm{2}} +{x}\left(−{A}^{\mathrm{2}} \alpha−{A}^{\mathrm{2}} \beta\right)+\left({A}^{\mathrm{2}} \alpha\beta−{A}\alpha−{A}\beta+\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({Ax}+\mathrm{1}\right)^{\mathrm{2}} −{A}^{\mathrm{2}} {x}\left(\alpha+\beta\right)+{A}\alpha\left({A}\beta−\mathrm{1}\right)−\left({A}\beta−\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({Ax}+\mathrm{1}\right)^{\mathrm{2}} −{A}^{\mathrm{2}} {x}\left(\alpha+\beta\right)+\left({A}\alpha−\mathrm{1}\right)\left({A}\beta−\mathrm{1}\right)=\mathrm{0} \\ $$$${A}^{\mathrm{2}} {x}^{\mathrm{2}} +\mathrm{2}{Ax}+\mathrm{1}−{A}^{\mathrm{2}} {x}\left(\alpha+\beta\right)+\left({A}\alpha−\mathrm{1}\right)\left({A}\beta−\mathrm{1}\right)=\mathrm{0} \\ $$$${A}^{\mathrm{2}} {x}^{\mathrm{2}} −{Ax}\left(\alpha+\beta−\mathrm{2}\right)+\left({A}\alpha−\mathrm{1}\right)\left({A}\beta−\mathrm{1}\right)+\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{{A}\left(\alpha+\beta−\mathrm{2}\right)\pm\sqrt{{A}^{\mathrm{2}} \left(\alpha+\beta−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}{A}^{\mathrm{2}} \left[\left({A}\alpha−\mathrm{1}\right)\left({A}\beta−\mathrm{1}\right)+\mathrm{1}\right]}}{\mathrm{2}{A}^{\mathrm{2}} } \\ $$$${x}=\frac{\alpha+\beta−\mathrm{2}\pm\sqrt{\left(\alpha+\beta−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}\left[\left({A}\alpha−\mathrm{1}\right)\left({A}\beta−\mathrm{1}\right)+\mathrm{1}\right.}}{\mathrm{2}{A}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by alphaprime last updated on 31/May/19

Very Nice cognizant

Commented by tanmay last updated on 31/May/19

thank you sir...

$${thank}\:{you}\:{sir}... \\ $$

Commented by alphaprime last updated on 31/May/19

Question no.61211 , I seriously need your help sir , I can't even come on telegram due to issues, I'm seeking intense help , I don't expect much but there's a hope , Mjs sir is with me in the workspace and has promised to provide solution till Monday, I need you and other intellectuals to join him and resolve the system Indeed help me out please sir ��

Commented by ajfour last updated on 31/May/19

We too are glad to have you here  on the forum Sir. Your questions  are precious.

$${We}\:{too}\:{are}\:{glad}\:{to}\:{have}\:{you}\:{here} \\ $$$${on}\:{the}\:{forum}\:{Sir}.\:{Your}\:{questions} \\ $$$${are}\:{precious}. \\ $$

Commented by alphaprime last updated on 31/May/19

Sir I'm welcoming you in my workspace and please don't disappoint me , I'll love to notice presence of higher intellectual faculty , Just provide me your email ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com