Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 61273 by alphaprime last updated on 31/May/19

Suppose α ,β,γ,δ are real numbers  such that α+β+γ+δ = α^7 +β^7 +γ^7 +δ^7 =0  Prove that α(α+β)(α+γ)(α+δ)=0

$${Suppose}\:\alpha\:,\beta,\gamma,\delta\:{are}\:{real}\:{numbers} \\ $$$${such}\:{that}\:\alpha+\beta+\gamma+\delta\:=\:\alpha^{\mathrm{7}} +\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} =\mathrm{0} \\ $$$${Prove}\:{that}\:\alpha\left(\alpha+\beta\right)\left(\alpha+\gamma\right)\left(\alpha+\delta\right)=\mathrm{0} \\ $$

Commented by Rasheed.Sindhi last updated on 31/May/19

   α+β+γ+δ = α^7 +β^7 +γ^7 +δ^7 =0  It can be proved that any two of  four have same value and remaining  two are additive inverse of the mentioned  two numbers(Only possibility)  So  Let  α=β=k ,γ=δ=−k     α+β+γ+δ = α^7 +β^7 +γ^7 +δ^7 =0         ⇒ k+k−k−k=k^7 +k^7 −k^7 −k^7 =0   α(α+β)(α+γ)(α+δ)        =k(k+k)(k−k)(k−)         =k.2k.0.0=0        Proved

$$\:\:\:\alpha+\beta+\gamma+\delta\:=\:\alpha^{\mathrm{7}} +\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} =\mathrm{0} \\ $$$$\mathrm{It}\:\mathrm{can}\:\mathrm{be}\:\mathrm{proved}\:\mathrm{that}\:\mathrm{any}\:\mathrm{two}\:\mathrm{of} \\ $$$$\mathrm{four}\:\mathrm{have}\:\mathrm{same}\:\mathrm{value}\:\mathrm{and}\:\mathrm{remaining} \\ $$$$\mathrm{two}\:\mathrm{are}\:\mathrm{additive}\:\mathrm{inverse}\:\mathrm{of}\:\mathrm{the}\:\mathrm{mentioned} \\ $$$$\mathrm{two}\:\mathrm{numbers}\left(\mathrm{Only}\:\mathrm{possibility}\right) \\ $$$$\mathrm{So} \\ $$$$\mathrm{Let}\:\:\alpha=\beta=\mathrm{k}\:,\gamma=\delta=−\mathrm{k} \\ $$$$\:\:\:\alpha+\beta+\gamma+\delta\:=\:\alpha^{\mathrm{7}} +\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:\mathrm{k}+\mathrm{k}−\mathrm{k}−\mathrm{k}=\mathrm{k}^{\mathrm{7}} +\mathrm{k}^{\mathrm{7}} −\mathrm{k}^{\mathrm{7}} −\mathrm{k}^{\mathrm{7}} =\mathrm{0} \\ $$$$\:\alpha\left(\alpha+\beta\right)\left(\alpha+\gamma\right)\left(\alpha+\delta\right) \\ $$$$\:\:\:\:\:\:=\mathrm{k}\left(\mathrm{k}+\mathrm{k}\right)\left(\mathrm{k}−\mathrm{k}\right)\left(\mathrm{k}−\right) \\ $$$$\:\:\:\:\:\:\:=\mathrm{k}.\mathrm{2k}.\mathrm{0}.\mathrm{0}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\mathrm{Proved} \\ $$$$ \\ $$

Commented by alphaprime last updated on 01/Jun/19

Could it have been better please?!

Answered by Rasheed.Sindhi last updated on 02/Jun/19

α+β+γ+δ = 0 ..............(i)               ∧  α^7 +β^7 +γ^7 +δ^7 =0............(ii)  (i)⇒α=−(β+γ+δ)  (ii)⇒{−(β+γ+δ)}^7 +β^7 +γ^7 +δ^7 =0  −(β+γ+δ)^7 =−(β^7 +γ^7 +δ^7 )     (β+γ+δ)^7 =β^7 +γ^7 +δ^7   possible  solutions:     {β,γ,δ}={0,0,0}⇒α=0  {α,β,γ,δ}={0,0,0,0}     For β=k≠0      {β,γ,δ}={k,0,0}⇒α=−(k+0+0)=−k  {α,β,γ,δ}={k,−k,0,0}  (This means all the possible combinations  of   k,−k,0,0)        (m+n−n)^7 =m^7 +n^7 +(−n)^7   ^• When {α,β,γ,δ}={0,0,0,0}    α(α+β)(α+γ)(α+δ)      =0(0+0)(0+0)(0+0)=0  ^• When   {α,β,γ,δ}={k,−k,0,0}    α(α+β)(α+γ)(α+γ)         =k(k−k)(k+0)(k+0)=0  Note:Different combinations of   k,−k,0,0 haave no effect on  the result of the above expression.          Hence proved

$$\alpha+\beta+\gamma+\delta\:=\:\mathrm{0}\:..............\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\wedge \\ $$$$\alpha^{\mathrm{7}} +\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} =\mathrm{0}............\left(\mathrm{ii}\right) \\ $$$$\left(\mathrm{i}\right)\Rightarrow\alpha=−\left(\beta+\gamma+\delta\right) \\ $$$$\left(\mathrm{ii}\right)\Rightarrow\left\{−\left(\beta+\gamma+\delta\right)\right\}^{\mathrm{7}} +\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} =\mathrm{0} \\ $$$$−\left(\beta+\gamma+\delta\right)^{\mathrm{7}} =−\left(\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} \right) \\ $$$$\:\:\:\left(\beta+\gamma+\delta\right)^{\mathrm{7}} =\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} \\ $$$$\mathrm{possible}\:\:\mathrm{solutions}: \\ $$$$\:\:\:\left\{\beta,\gamma,\delta\right\}=\left\{\mathrm{0},\mathrm{0},\mathrm{0}\right\}\Rightarrow\alpha=\mathrm{0} \\ $$$$\left\{\alpha,\beta,\gamma,\delta\right\}=\left\{\mathrm{0},\mathrm{0},\mathrm{0},\mathrm{0}\right\} \\ $$$$\:\:\:\mathrm{For}\:\beta=\mathrm{k}\neq\mathrm{0} \\ $$$$\:\:\:\:\left\{\beta,\gamma,\delta\right\}=\left\{\mathrm{k},\mathrm{0},\mathrm{0}\right\}\Rightarrow\alpha=−\left(\mathrm{k}+\mathrm{0}+\mathrm{0}\right)=−\mathrm{k} \\ $$$$\left\{\alpha,\beta,\gamma,\delta\right\}=\left\{\mathrm{k},−\mathrm{k},\mathrm{0},\mathrm{0}\right\} \\ $$$$\left(\mathrm{This}\:\mathrm{means}\:\mathrm{all}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{combinations}\right. \\ $$$$\left.\mathrm{of}\:\:\:\mathrm{k},−\mathrm{k},\mathrm{0},\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\left(\mathrm{m}+\mathrm{n}−\mathrm{n}\right)^{\mathrm{7}} =\mathrm{m}^{\mathrm{7}} +\mathrm{n}^{\mathrm{7}} +\left(−\mathrm{n}\right)^{\mathrm{7}} \\ $$$$\:^{\bullet} \mathrm{When}\:\left\{\alpha,\beta,\gamma,\delta\right\}=\left\{\mathrm{0},\mathrm{0},\mathrm{0},\mathrm{0}\right\} \\ $$$$\:\:\alpha\left(\alpha+\beta\right)\left(\alpha+\gamma\right)\left(\alpha+\delta\right) \\ $$$$\:\:\:\:=\mathrm{0}\left(\mathrm{0}+\mathrm{0}\right)\left(\mathrm{0}+\mathrm{0}\right)\left(\mathrm{0}+\mathrm{0}\right)=\mathrm{0} \\ $$$$\:^{\bullet} \mathrm{When}\:\:\:\left\{\alpha,\beta,\gamma,\delta\right\}=\left\{\mathrm{k},−\mathrm{k},\mathrm{0},\mathrm{0}\right\} \\ $$$$\:\:\alpha\left(\alpha+\beta\right)\left(\alpha+\gamma\right)\left(\alpha+\gamma\right) \\ $$$$\:\:\:\:\:\:\:=\mathrm{k}\left(\mathrm{k}−\mathrm{k}\right)\left(\mathrm{k}+\mathrm{0}\right)\left(\mathrm{k}+\mathrm{0}\right)=\mathrm{0} \\ $$$$\mathrm{Note}:\mathrm{Different}\:\mathrm{combinations}\:\mathrm{of} \\ $$$$\:\mathrm{k},−\mathrm{k},\mathrm{0},\mathrm{0}\:\mathrm{haave}\:\mathrm{no}\:\mathrm{effect}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{result}\:\mathrm{of}\:\mathrm{the}\:\mathrm{above}\:\mathrm{expression}. \\ $$$$ \\ $$$$\:\:\:\:\:\:\mathrm{Hence}\:\mathrm{proved} \\ $$$$\:\: \\ $$

Commented by alphaprime last updated on 02/Jun/19

Thank you gentlemen :)

Commented by Rasheed.Sindhi last updated on 02/Jun/19

Thanks but the answer is not  satisfactory yet! Because It doesn′t  covers all the possibilities.  For example α=a≠0 , β=b≠0,  γ=−a & δ=−b.   α+β+γ+δ=0⇒a+b−a−b=0  α^7 +β^7 +γ^7 +δ^7 =0            ⇒a^7 +b^7 +(−a)^7 +(−b)^7                  =a^7 +b^7 −a^7 −b^7 =0    α(α+β)(α+γ)(α+δ)      =a(a+b)(a−a)(a−b)=0  How the  solution set:        {α,β,γ,δ}={a,b,−a,−b}  can be derived from        (β+γ+δ)^7 =β^7 +γ^7 +δ^7   ?  I think {α,β,γ,δ}={a,b,−a,−b}  where a,b∈R (a,b may be zero also)  is complete solution.

$$\mathrm{Thanks}\:\mathrm{but}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{not} \\ $$$$\mathrm{satisfactory}\:\mathrm{yet}!\:\mathrm{Because}\:\mathrm{It}\:\mathrm{doesn}'\mathrm{t} \\ $$$$\mathrm{covers}\:\mathrm{all}\:\mathrm{the}\:\mathrm{possibilities}. \\ $$$$\mathrm{For}\:\mathrm{example}\:\alpha=\mathrm{a}\neq\mathrm{0}\:,\:\beta=\mathrm{b}\neq\mathrm{0}, \\ $$$$\gamma=−\mathrm{a}\:\&\:\delta=−\mathrm{b}. \\ $$$$\:\alpha+\beta+\gamma+\delta=\mathrm{0}\Rightarrow\mathrm{a}+\mathrm{b}−\mathrm{a}−\mathrm{b}=\mathrm{0} \\ $$$$\alpha^{\mathrm{7}} +\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\Rightarrow\mathrm{a}^{\mathrm{7}} +\mathrm{b}^{\mathrm{7}} +\left(−\mathrm{a}\right)^{\mathrm{7}} +\left(−\mathrm{b}\right)^{\mathrm{7}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{a}^{\mathrm{7}} +\mathrm{b}^{\mathrm{7}} −\mathrm{a}^{\mathrm{7}} −\mathrm{b}^{\mathrm{7}} =\mathrm{0} \\ $$$$ \\ $$$$\alpha\left(\alpha+\beta\right)\left(\alpha+\gamma\right)\left(\alpha+\delta\right) \\ $$$$\:\:\:\:=\mathrm{a}\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{a}−\mathrm{a}\right)\left(\mathrm{a}−\mathrm{b}\right)=\mathrm{0} \\ $$$$\mathrm{How}\:\mathrm{the}\:\:\mathrm{solution}\:\mathrm{set}: \\ $$$$\:\:\:\:\:\:\left\{\alpha,\beta,\gamma,\delta\right\}=\left\{\mathrm{a},\mathrm{b},−\mathrm{a},−\mathrm{b}\right\} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{derived}\:\mathrm{from} \\ $$$$\:\:\:\:\:\:\left(\beta+\gamma+\delta\right)^{\mathrm{7}} =\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} \:\:? \\ $$$$\mathrm{I}\:\mathrm{think}\:\left\{\alpha,\beta,\gamma,\delta\right\}=\left\{\mathrm{a},\mathrm{b},−\mathrm{a},−\mathrm{b}\right\} \\ $$$$\mathrm{where}\:\mathrm{a},\mathrm{b}\in\mathbb{R}\:\left(\mathrm{a},\mathrm{b}\:\mathrm{may}\:\mathrm{be}\:\mathrm{zero}\:\mathrm{also}\right) \\ $$$$\mathrm{is}\:\mathrm{complete}\:\mathrm{solution}. \\ $$

Answered by Rasheed.Sindhi last updated on 03/Jun/19

α+β+γ+δ =0.............(i)            ∧  α^7 +β^7 +γ^7 +δ^7 =0..........(ii)  ⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢^(−)   Let α=a , β=b where a,b∈R  (i)⇒γ+δ=−a−b.............(iii)  (ii)⇒γ^7 +δ^7 =−a^7 −b^7 .......(iv)  (iii) & (iv) have only two real solutions  (See the answer & comments of sir   MJS to Q#61470) and they are            γ=−a ∧ δ=−b                       OR           γ=−b ∧ δ=−a  Hence the general solution to  α+β+γ+δ = α^7 +β^7 +γ^7 +δ^7 =0  is {α,β,γ,δ}={a,b,−a,−b} for real  α,β,γ,δ.     To prove α(α+β)(α+γ)(α+δ)=0     α(α+β)(α+γ)(α+δ)       =a(a+b)(a−a)(a−b)       =a(a+b)(0)(a−b)=0

$$\alpha+\beta+\gamma+\delta\:=\mathrm{0}.............\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\wedge \\ $$$$\alpha^{\mathrm{7}} +\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} =\mathrm{0}..........\left(\mathrm{ii}\right) \\ $$$$\overline {\smile\frown\smile\frown\smile\frown\smile\frown\smile\frown} \\ $$$$\mathrm{Let}\:\alpha=\mathrm{a}\:,\:\beta=\mathrm{b}\:\mathrm{where}\:\mathrm{a},\mathrm{b}\in\mathbb{R} \\ $$$$\left(\mathrm{i}\right)\Rightarrow\gamma+\delta=−\mathrm{a}−\mathrm{b}.............\left(\mathrm{iii}\right) \\ $$$$\left(\mathrm{ii}\right)\Rightarrow\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} =−\mathrm{a}^{\mathrm{7}} −\mathrm{b}^{\mathrm{7}} .......\left(\mathrm{iv}\right) \\ $$$$\left(\mathrm{iii}\right)\:\&\:\left(\mathrm{iv}\right)\:\mathrm{have}\:\mathrm{only}\:\mathrm{two}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$\left(\mathrm{See}\:\mathrm{the}\:\mathrm{answer}\:\&\:\mathrm{comments}\:\mathrm{of}\:\mathrm{sir}\right. \\ $$$$\left.\:\mathrm{MJS}\:\mathrm{to}\:\mathrm{Q}#\mathrm{61470}\right)\:\mathrm{and}\:\mathrm{they}\:\mathrm{are}\: \\ $$$$\:\:\:\:\:\:\:\:\:\gamma=−\mathrm{a}\:\wedge\:\delta=−\mathrm{b} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{OR} \\ $$$$\:\:\:\:\:\:\:\:\:\gamma=−\mathrm{b}\:\wedge\:\delta=−\mathrm{a} \\ $$$$\mathcal{H}\mathrm{ence}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{to} \\ $$$$\alpha+\beta+\gamma+\delta\:=\:\alpha^{\mathrm{7}} +\beta^{\mathrm{7}} +\gamma^{\mathrm{7}} +\delta^{\mathrm{7}} =\mathrm{0} \\ $$$$\mathrm{is}\:\left\{\alpha,\beta,\gamma,\delta\right\}=\left\{\mathrm{a},\mathrm{b},−\mathrm{a},−\mathrm{b}\right\}\:\mathrm{for}\:\mathrm{real} \\ $$$$\alpha,\beta,\gamma,\delta. \\ $$$$\: \\ $$$$\mathrm{To}\:\mathrm{prove}\:\alpha\left(\alpha+\beta\right)\left(\alpha+\gamma\right)\left(\alpha+\delta\right)=\mathrm{0} \\ $$$$\:\:\:\alpha\left(\alpha+\beta\right)\left(\alpha+\gamma\right)\left(\alpha+\delta\right) \\ $$$$\:\:\:\:\:=\mathrm{a}\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{a}−\mathrm{a}\right)\left(\mathrm{a}−\mathrm{b}\right) \\ $$$$\:\:\:\:\:=\mathrm{a}\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{0}\right)\left(\mathrm{a}−\mathrm{b}\right)=\mathrm{0} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com