Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 61313 by Tony Lin last updated on 31/May/19

how to calculate lim_(n→+∞) 0.05^(0.05^(0.05^.^.^(.0.05)   ) ) }n  in a simple and fast way?

$$\left.{how}\:{to}\:{calculate}\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}0}.\mathrm{05}^{\mathrm{0}.\mathrm{05}^{\mathrm{0}.\mathrm{05}^{.^{.^{.\mathrm{0}.\mathrm{05}} } } } } \right\}{n} \\ $$$${in}\:{a}\:{simple}\:{and}\:{fast}\:{way}? \\ $$

Commented by mr W last updated on 31/May/19

let x=0.05^(0.05^(0.05^.^.^(.0.05)   ) ) } n→∞  ⇒x=0.05^x   ⇒x=e^(xln 0.05)   ⇒xe^(−xln 0.05) =1  ⇒(−xln 0.05)e^(−xln 0.05) =−ln 0.05  ⇒−xln 0.05=W(−ln 0.05)  ⇒x=((W(−ln 0.05))/((−ln 0.05)))=((1.0492)/(2.9957))=0.3502  i.e. lim_(n→+∞) 0.05^(0.05^(0.05^.^.^(.0.05)   ) ) }n ≈0.3502

$$\left.{let}\:{x}=\mathrm{0}.\mathrm{05}^{\mathrm{0}.\mathrm{05}^{\mathrm{0}.\mathrm{05}^{.^{.^{.\mathrm{0}.\mathrm{05}} } } } } \right\}\:{n}\rightarrow\infty \\ $$$$\Rightarrow{x}=\mathrm{0}.\mathrm{05}^{{x}} \\ $$$$\Rightarrow{x}={e}^{{x}\mathrm{ln}\:\mathrm{0}.\mathrm{05}} \\ $$$$\Rightarrow{xe}^{−{x}\mathrm{ln}\:\mathrm{0}.\mathrm{05}} =\mathrm{1} \\ $$$$\Rightarrow\left(−{x}\mathrm{ln}\:\mathrm{0}.\mathrm{05}\right){e}^{−{x}\mathrm{ln}\:\mathrm{0}.\mathrm{05}} =−\mathrm{ln}\:\mathrm{0}.\mathrm{05} \\ $$$$\Rightarrow−{x}\mathrm{ln}\:\mathrm{0}.\mathrm{05}={W}\left(−\mathrm{ln}\:\mathrm{0}.\mathrm{05}\right) \\ $$$$\Rightarrow{x}=\frac{{W}\left(−\mathrm{ln}\:\mathrm{0}.\mathrm{05}\right)}{\left(−\mathrm{ln}\:\mathrm{0}.\mathrm{05}\right)}=\frac{\mathrm{1}.\mathrm{0492}}{\mathrm{2}.\mathrm{9957}}=\mathrm{0}.\mathrm{3502} \\ $$$$\left.{i}.{e}.\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}0}.\mathrm{05}^{\mathrm{0}.\mathrm{05}^{\mathrm{0}.\mathrm{05}^{.^{.^{.\mathrm{0}.\mathrm{05}} } } } } \right\}{n}\:\approx\mathrm{0}.\mathrm{3502} \\ $$

Commented by mr W last updated on 01/Jun/19

generally for a<1:  a^a^a^(.....)   =((W(−ln a))/((−ln a)))  for a=1:  a^a^a^(.....)   =1  for a>1:  a^a^a^(.....)   →∞

$${generally}\:{for}\:{a}<\mathrm{1}: \\ $$$${a}^{{a}^{{a}^{.....} } } =\frac{\mathbb{W}\left(−\mathrm{ln}\:{a}\right)}{\left(−\mathrm{ln}\:{a}\right)} \\ $$$${for}\:{a}=\mathrm{1}: \\ $$$${a}^{{a}^{{a}^{.....} } } =\mathrm{1} \\ $$$${for}\:{a}>\mathrm{1}: \\ $$$${a}^{{a}^{{a}^{.....} } } \rightarrow\infty \\ $$

Commented by Tony Lin last updated on 01/Jun/19

thanks sir,  it is cool!

$${thanks}\:{sir},\:\:{it}\:{is}\:{cool}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com