Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 61328 by maxmathsup by imad last updated on 01/Jun/19

let f(a) =∫_0 ^1    ((sin(2x))/(1+ax^2 )) dx  with  ∣a∣<1  1) approximate f(a) by a polynom  2) find the value  (perhaps not exact) of ∫_0 ^1   ((sin(2x))/(1+2x^2 )) dx  3) let g(a) = ∫_0 ^1   ((x^2 sin(2x))/((1+ax^2 )^2 )) dx   approximat g(a) by a polynom  4) find the value of  ∫_0 ^1   ((x^2 sin(2x))/((1+2x^2 )^2 )) dx .

letf(a)=01sin(2x)1+ax2dxwitha∣<1 1)approximatef(a)byapolynom 2)findthevalue(perhapsnotexact)of01sin(2x)1+2x2dx 3)letg(a)=01x2sin(2x)(1+ax2)2dxapproximatg(a)byapolynom 4)findthevalueof01x2sin(2x)(1+2x2)2dx.

Commented bymaxmathsup by imad last updated on 02/Jun/19

1) the Q is approximate f(a) by a function.

1)theQisapproximatef(a)byafunction.

Commented bymaxmathsup by imad last updated on 02/Jun/19

1)  we have    x−(x^3 /6) ≤ sinx ≤ x ⇒2x−((8x^3 )/6) ≤ sin(2x) ≤2x ⇒  2x−(4/3)x^3  ≤ sin(2x)≤2x ⇒((2x−(4/3)x^3 )/(1+ax^2 )) ≤((sin(2x))/(1+ax^2 )) ≤ ((2x)/(1+ax^2 )) ⇒  ∫_0 ^1   ((2xdx)/(1+ax^2 )) −(4/3) ∫_0 ^1   (x^3 /(1+ax^2 ))dx ≤ ∫_0 ^1    ((sin(2x))/(1+ax^2 )) dx ≤ ∫_0 ^1   ((2x)/(1+ax^2 )) dx  ∫_0 ^1   ((2xdx)/(ax^2  +1)) =(1/a) ∫_0 ^1  ((2ax dx)/(ax^2  +1)) =(1/a)[ln(ax^2  +1)]_0 ^1 =((ln(1+a))/a)   ( we suppose a≠0 )  ∫_0 ^1   (x^3 /(ax^2  +1)) dx =(1/a) ∫_0 ^1  (((ax^2 +1)x−x)/(ax^2  +1)) dx  =(1/a)∫_0 ^1  dx−(1/a) ∫_0 ^1  ((xdx)/(ax^2  +1))  =(1/a) −(1/(2a^2 )) ∫_0 ^1   ((2ax )/(ax^2  +1)) dx =(1/a) −(1/(2a^2 ))[ln(ax^2  +1)]_0 ^1  =(1/a) −((ln(a+1))/(2a^2 )) ⇒  ((ln(1+a))/a) −(4/(3a)) +((2ln(a+1))/(3a^2 )) ≤ f(a) ≤ ((ln(1+a))/a) ⇒  so we can take  v_0 =((ln(1+a))/(2a)) −(2/(3a)) +((ln(1+a))/(3a^2 )) +((ln(1+a))/(2a))  =((ln(1+a))/a) −(2/(3a)) +((ln(1+a))/(3a^2 )) ⇒f(a) ∼ ((ln(1+a))/a) −(2/(3a)) +((ln(1+a))/(3a^2 ))  with error δ = (1/2){ (4/(3a))−((2ln(a+1))/(3a^2 ))}

1)wehavexx36sinxx2x8x36sin(2x)2x 2x43x3sin(2x)2x2x43x31+ax2sin(2x)1+ax22x1+ax2 012xdx1+ax24301x31+ax2dx01sin(2x)1+ax2dx012x1+ax2dx 012xdxax2+1=1a012axdxax2+1=1a[ln(ax2+1)]01=ln(1+a)a(wesupposea0) 01x3ax2+1dx=1a01(ax2+1)xxax2+1dx=1a01dx1a01xdxax2+1 =1a12a2012axax2+1dx=1a12a2[ln(ax2+1)]01=1aln(a+1)2a2 ln(1+a)a43a+2ln(a+1)3a2f(a)ln(1+a)a sowecantakev0=ln(1+a)2a23a+ln(1+a)3a2+ln(1+a)2a =ln(1+a)a23a+ln(1+a)3a2f(a)ln(1+a)a23a+ln(1+a)3a2 witherrorδ=12{43a2ln(a+1)3a2}

Commented bymaxmathsup by imad last updated on 02/Jun/19

2)  ∫_0 ^1   ((sin(2x))/(1+2x^2 )) dx =f(2)   and f(2)  ∼ ((ln(3))/2) −(1/3) +((ln(3))/(12))  =((6ln(3)−4 +ln(3))/(12)) =((7ln(3)−4)/(12)) ⇒ ∫_0 ^1   ((sin(2x))/(1+2x^2 )) dx ∼(7/(12))ln(3)−(1/3)

2)01sin(2x)1+2x2dx=f(2)andf(2)ln(3)213+ln(3)12 =6ln(3)4+ln(3)12=7ln(3)41201sin(2x)1+2x2dx712ln(3)13

Commented bymaxmathsup by imad last updated on 02/Jun/19

∫_0 ^1   ((sin(2x))/(1+2x^2 ))dx ∼0,3

01sin(2x)1+2x2dx0,3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com