Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 61329 by maxmathsup by imad last updated on 01/Jun/19

let f(x) =(e^(−x) /(1+x)) sin(3x)  1) dtermine f^((n)) (x) and f^((n)) (0)  2) developp f at integr serie .

letf(x)=ex1+xsin(3x)1)dterminef(n)(x)andf(n)(0)2)developpfatintegrserie.

Commented by maxmathsup by imad last updated on 03/Jun/19

1)  we have f(x)=Im((1/(1+x))e^(−x+3ix) ) = Im((1/(1+x)) e^((−1+3i)x) )=Im(w(x)) we have  w(x)^((n)) ={(1/(1+x)) e^((−1+3i)x) }^((n))  =_(leibniz)       Σ_(k=0) ^n  C_n ^k  ((1/(1+x)))^((k))  (e^((−1+3i)x) )^((n−k))   but (e^(zx) )^((k))  =_(zfixed)     z^k  e^(zx)  ⇒{e^((−1+3i)x) }^((n−k)) =(−1+3i)^(n−k)  e^((−1+3i)x)    also  ((1/(1+x)))^((k))  =(((−1)^k  k!)/((1+x)^(k+1) )) ⇒w^((n)) (x) = Σ_(k=0) ^n  C_n ^k   (((−1)^k  k!)/((1+x)^(k+1) )) (−1+3i)^(n−k)  e^((−1+3i)x)     we have ∣−1+3i∣ =(√(1+9))=(√(10)) ⇒−1+3i =(√(10))(((−1)/(√(10))) +((3i)/(√(10))))=r e^(iθ)  ⇒  r=(√(10))   and   cosθ =((−1)/(√(10))) , sinθ =(3/(√(10))) ⇒tanθ =−3 ⇒θ =−arctan(3) ⇒  −1+3i =(√(10))e^(−i arctan(3))  =⇒(−1+3i)^(n−k)  =10^((n−k)/2)   e^(−(n−k)i arctan(3))   and  (−1+3i)^(n−k)  e^((−1+3i)x)  =  10^((n−k)/2)  (cos(n−k)arctan3)−isin(n−k)arctan(3)}e^(−x) {cos(3x)+isin(3x)}  e^(−x)  10^((n−k)/2) {cos(3x)cos(n−k)arctan3 +isin(3x)cos(n−k)arctan3  −i cos(3x) sin(n−k)arctan3 +sin(3x)sin(n−k)arctan3  ⇒ f^((n)) (x)=Im(w^((n)) )=  Σ_(k=0) ^n    (−1)^k k!  (C_n ^k /((x+1)^(k+1) )) e^(−x)  10^((n−k)/2) {  sin(3x)cos{(n−k)arctan(3)  −cos(3x) sin{(n−k)arctan(3)} ⇒  f^((n)) (0) =− Σ_(k=0) ^n   (−1)^k k!   C_n ^k   10^((n−k)/2)   sin{(n−k)arctan3}

1)wehavef(x)=Im(11+xex+3ix)=Im(11+xe(1+3i)x)=Im(w(x))wehavew(x)(n)={11+xe(1+3i)x}(n)=leibnizk=0nCnk(11+x)(k)(e(1+3i)x)(nk)but(ezx)(k)=zfixedzkezx{e(1+3i)x}(nk)=(1+3i)nke(1+3i)xalso(11+x)(k)=(1)kk!(1+x)k+1w(n)(x)=k=0nCnk(1)kk!(1+x)k+1(1+3i)nke(1+3i)xwehave1+3i=1+9=101+3i=10(110+3i10)=reiθr=10andcosθ=110,sinθ=310tanθ=3θ=arctan(3)1+3i=10eiarctan(3)=⇒(1+3i)nk=10nk2e(nk)iarctan(3)and(1+3i)nke(1+3i)x=10nk2(cos(nk)arctan3)isin(nk)arctan(3)}ex{cos(3x)+isin(3x)}ex10nk2{cos(3x)cos(nk)arctan3+isin(3x)cos(nk)arctan3icos(3x)sin(nk)arctan3+sin(3x)sin(nk)arctan3f(n)(x)=Im(w(n))=k=0n(1)kk!Cnk(x+1)k+1ex10nk2{sin(3x)cos{(nk)arctan(3)cos(3x)sin{(nk)arctan(3)}f(n)(0)=k=0n(1)kk!Cnk10nk2sin{(nk)arctan3}

Commented by maxmathsup by imad last updated on 03/Jun/19

2)  f(x) =Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n   =Σ_(n=0) ^∞   (1/(n!)){ Σ_(k=0) ^n (−1)^(k+1)  k!   ((n!)/(k!(n−k)!)) 10^((n−k)/2)  sin{(n−k)arctan(3)}  =Σ_(n=0) ^∞   (Σ_(k=0) ^n  (−1)^(k+1)    ((10^((n−k)/2) )/((n−k)!)) sin{(n−k)arctan3})x^n  ⇒  f(x) =Σ_(n=0) ^∞  a_n x^n   with    a_n =Σ_(k=0) ^n  (−1)^(k+1)  ((10^((n−k)/2) )/((n−k)!)) sin{(n−k)arctan3}

2)f(x)=n=0f(n)(0)n!xn=n=01n!{k=0n(1)k+1k!n!k!(nk)!10nk2sin{(nk)arctan(3)}=n=0(k=0n(1)k+110nk2(nk)!sin{(nk)arctan3})xnf(x)=n=0anxnwithan=k=0n(1)k+110nk2(nk)!sin{(nk)arctan3}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com