Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 6136 by sanusihammed last updated on 15/Jun/16

Show that of all rectangles inscribed in a given circle   the square has a maximum area.

$${Show}\:{that}\:{of}\:{all}\:{rectangles}\:{inscribed}\:{in}\:{a}\:{given}\:{circle}\: \\ $$$${the}\:{square}\:{has}\:{a}\:{maximum}\:{area}. \\ $$

Answered by Rasheed Soomro last updated on 15/Jun/16

All the rectangles inscribed in same circle  have equal diagonals and vice versa.  Let the measure of diagonal  is D  If a and b are dimentions of rectangle                    D=(√(a^2 +b^2 ))  If s is measure  of the side of square                    D=(√(s^2 +s^2 ))=(√2) s                (√(a^2 +b^2 ))=(√2) s                   s=(√((a^2 +b^2 )/2))     Area of square=s^2 =((a^2 +b^2 )/2)     Area of rectangle=ab  Now we have to prove that           Area of square>Area of rectangle             ((a^2 +b^2 )/2)>ab      ∀a,b>0 ∧ a≠b  There is a proved relation between arithmatic  mean,geometric mean and harmonic mean  which will help us to prove the above result.  If A, G, H are A.M. ,positive G.M. and  H.M.  between any two positive and unequal  numbers a  and  b  then                      A>G>H                ((a+b)/2)>ab>((2ab)/(a+b))                ((a+b)/2)>((2ab)/(a+b))                  (( (a+b)^2 )/2)>2ab                  (( a^2 +2ab+b^2 )/2)>2ab                    (a^2 /2)+ab+(b^2 /2)>2ab                   ((a^2 +b^2 )/2)>ab          Area of square_() >Area of rectangle  provided that they have same diagonals.I-E  they are inscribed in same circle

$${All}\:{the}\:{rectangles}\:{inscribed}\:{in}\:{same}\:{circle} \\ $$$${have}\:{equal}\:{diagonals}\:{and}\:{vice}\:{versa}. \\ $$$${Let}\:{the}\:{measure}\:{of}\:{diagonal}\:\:{is}\:{D} \\ $$$${If}\:\boldsymbol{{a}}\:{and}\:\boldsymbol{{b}}\:{are}\:{dimentions}\:{of}\:{rectangle} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{D}=\sqrt{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} } \\ $$$${If}\:\boldsymbol{{s}}\:{is}\:{measure}\:\:{of}\:{the}\:{side}\:{of}\:{square} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{D}=\sqrt{\boldsymbol{{s}}^{\mathrm{2}} +\boldsymbol{{s}}^{\mathrm{2}} }=\sqrt{\mathrm{2}}\:\boldsymbol{{s}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sqrt{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }=\sqrt{\mathrm{2}}\:\boldsymbol{{s}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{s}}=\sqrt{\frac{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$$\:\:\:{Area}\:{of}\:{square}=\boldsymbol{{s}}^{\mathrm{2}} =\frac{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:{Area}\:{of}\:{rectangle}=\boldsymbol{{ab}} \\ $$$${Now}\:{we}\:{have}\:{to}\:{prove}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:{Area}\:{of}\:{square}>{Area}\:{of}\:{rectangle} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}}>\boldsymbol{{ab}}\:\:\:\:\:\:\forall\boldsymbol{{a}},\boldsymbol{{b}}>\mathrm{0}\:\wedge\:\boldsymbol{{a}}\neq\boldsymbol{{b}} \\ $$$${There}\:{is}\:{a}\:{proved}\:{relation}\:{between}\:{arithmatic} \\ $$$${mean},{geometric}\:{mean}\:{and}\:{harmonic}\:{mean} \\ $$$${which}\:{will}\:{help}\:{us}\:{to}\:{prove}\:{the}\:{above}\:{result}. \\ $$$${If}\:{A},\:{G},\:{H}\:{are}\:{A}.{M}.\:,{positive}\:{G}.{M}.\:{and} \\ $$$${H}.{M}.\:\:{between}\:{any}\:{two}\:{positive}\:{and}\:{unequal} \\ $$$${numbers}\:\boldsymbol{{a}}\:\:{and}\:\:\boldsymbol{{b}}\:\:{then} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{A}>{G}>{H} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}+\boldsymbol{{b}}}{\mathrm{2}}>\boldsymbol{{ab}}>\frac{\mathrm{2}\boldsymbol{{ab}}}{\boldsymbol{{a}}+\boldsymbol{{b}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}+\boldsymbol{{b}}}{\mathrm{2}}>\frac{\mathrm{2}\boldsymbol{{ab}}}{\boldsymbol{{a}}+\boldsymbol{{b}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\:\left(\boldsymbol{{a}}+\boldsymbol{{b}}\right)^{\mathrm{2}} }{\mathrm{2}}>\mathrm{2}\boldsymbol{{ab}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\:\boldsymbol{{a}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{ab}}+\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}}>\mathrm{2}\boldsymbol{{ab}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}^{\mathrm{2}} }{\mathrm{2}}+\boldsymbol{{ab}}+\frac{\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}}>\mathrm{2}\boldsymbol{{ab}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\boldsymbol{{a}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }{\mathrm{2}}>\boldsymbol{{ab}} \\ $$$$\:\:\:\:\:\:\:\:\underset{} {{Area}\:{of}\:{square}}>{Area}\:{of}\:{rectangle} \\ $$$${provided}\:{that}\:{they}\:{have}\:{same}\:{diagonals}.{I}-{E} \\ $$$${they}\:{are}\:{inscribed}\:{in}\:{same}\:{circle} \\ $$$$ \\ $$

Answered by FilupSmith last updated on 15/Jun/16

An easy solution using integrals     Rectangle of height y, length x  has area:  A_r =∫_0 ^( x) y du = yx  Square of sides x:  A_s =∫_0 ^( x) x du = x^2     yx<x^2  if y<x  therefore A_s >A_r  for all y<x    ∴square has greatest area

$$\mathrm{An}\:\mathrm{easy}\:\mathrm{solution}\:\mathrm{using}\:\mathrm{integrals} \\ $$$$\: \\ $$$$\mathrm{Rectangle}\:\mathrm{of}\:\mathrm{height}\:{y},\:\mathrm{length}\:{x} \\ $$$$\mathrm{has}\:\mathrm{area}: \\ $$$${A}_{{r}} =\int_{\mathrm{0}} ^{\:{x}} {y}\:{du}\:=\:{yx} \\ $$$$\mathrm{Square}\:\mathrm{of}\:\mathrm{sides}\:{x}: \\ $$$${A}_{{s}} =\int_{\mathrm{0}} ^{\:{x}} {x}\:{du}\:=\:{x}^{\mathrm{2}} \\ $$$$ \\ $$$${yx}<{x}^{\mathrm{2}} \:\mathrm{if}\:{y}<{x} \\ $$$$\mathrm{therefore}\:{A}_{{s}} >{A}_{{r}} \:\mathrm{for}\:\mathrm{all}\:{y}<{x} \\ $$$$ \\ $$$$\therefore{square}\:{has}\:{greatest}\:{area} \\ $$

Commented by FilupSmith last updated on 15/Jun/16

oh, i didnt read the part about the cirlce  sorry, but i misread the question

$$\mathrm{oh},\:\mathrm{i}\:\mathrm{didnt}\:\mathrm{read}\:\mathrm{the}\:\mathrm{part}\:\mathrm{about}\:\mathrm{the}\:\mathrm{cirlce} \\ $$$$\mathrm{sorry},\:\mathrm{but}\:\mathrm{i}\:\mathrm{misread}\:\mathrm{the}\:\mathrm{question} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com