Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 61528 by maxmathsup by imad last updated on 04/Jun/19

find  ∫_0 ^∞   cos(zx^2 )dx with z ∈ C .

$${find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:{cos}\left({zx}^{\mathrm{2}} \right){dx}\:{with}\:{z}\:\in\:{C}\:. \\ $$

Commented by maxmathsup by imad last updated on 04/Jun/19

let I =∫_0 ^∞  cos(zx^2 )dx ⇒2I =∫_(−∞) ^(+∞)  cos(zx^2 )  let z =a+ib ⇒  2I =∫_(−∞) ^(+∞)  cos((a+ib)x^2 )   but   cos(z) =ch(iz) ⇒  2I =∫_(−∞) ^(+∞)  ch(i(a+ib)x^2 )dx =∫_(−∞) ^(+∞)  ch(iax^2  −bx^2 )dx  =∫_(−∞) ^(+∞)    ((e^(i(iax^2 −bx^2 ))  +e^(−i(iax^2 −bx^2 )) )/2) dx  =∫_(−∞) ^(+∞)    ((e^(−ax^2 −ibx^2 ) +e^(ax^2 +ibx^2 ) )/2) dx =(1/2) ∫_(−∞) ^(+∞)   e^(−(a+ib)x^2 ) dx +(1/2) ∫_(−∞) ^(+∞)   e^(−(−a−ib)x^2 ) dx  ∫_(−∞) ^(+∞)   e^(−(a+ib)x^2 ) dx=_((√(a+ib))x =t)       ∫_(−∞) ^(+∞)   e^(−t^2 )   (dt/(√(a+ib))) =(π/(√(a+ib))) =(π/(√z))  ∫_(−∞) ^(+∞)    e^(−(−a−ib)x^2 ) dx =_((√(−a−ib))x =t)      ∫_(−∞) ^(+∞)  e^(−t^2 )    (dt/(√(−a−ib))) =(π/(√(−a−ib)))  =(π/((√(−1))(√(a+ib)))) =(π/(i(√z))) ⇒ 2I =(π/(2(√z))) +(π/(2i(√z))) =(π/(2(√z))) −((iπ)/(2(√z)))  ⇒I =(π/4)((1−i)/(√z))  if we take z =re^(iθ)    we get I =(π/4) ((1−i)/((√r)e^(i(θ/2)) )) =(π/(4(√r)))  (√2)e^(−((iπ)/4))  e^(−((iθ)/2))  =((π(√2))/(4(√r))) e^(i(−(π/4)−(θ/2)))   I = ((π(√2))/(4(√r))) e^(−i((π/4)+(θ/2)))   .

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\infty} \:{cos}\left({zx}^{\mathrm{2}} \right){dx}\:\Rightarrow\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:{cos}\left({zx}^{\mathrm{2}} \right)\:\:{let}\:{z}\:={a}+{ib}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:{cos}\left(\left({a}+{ib}\right){x}^{\mathrm{2}} \right)\:\:\:{but}\:\:\:{cos}\left({z}\right)\:={ch}\left({iz}\right)\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\int_{−\infty} ^{+\infty} \:{ch}\left({i}\left({a}+{ib}\right){x}^{\mathrm{2}} \right){dx}\:=\int_{−\infty} ^{+\infty} \:{ch}\left({iax}^{\mathrm{2}} \:−{bx}^{\mathrm{2}} \right){dx} \\ $$$$=\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{i}\left({iax}^{\mathrm{2}} −{bx}^{\mathrm{2}} \right)} \:+{e}^{−{i}\left({iax}^{\mathrm{2}} −{bx}^{\mathrm{2}} \right)} }{\mathrm{2}}\:{dx} \\ $$$$=\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{−{ax}^{\mathrm{2}} −{ibx}^{\mathrm{2}} } +{e}^{{ax}^{\mathrm{2}} +{ibx}^{\mathrm{2}} } }{\mathrm{2}}\:{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({a}+{ib}\right){x}^{\mathrm{2}} } {dx}\:+\frac{\mathrm{1}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:{e}^{−\left(−{a}−{ib}\right){x}^{\mathrm{2}} } {dx} \\ $$$$\int_{−\infty} ^{+\infty} \:\:{e}^{−\left({a}+{ib}\right){x}^{\mathrm{2}} } {dx}=_{\sqrt{{a}+{ib}}{x}\:={t}} \:\:\:\:\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{t}^{\mathrm{2}} } \:\:\frac{{dt}}{\sqrt{{a}+{ib}}}\:=\frac{\pi}{\sqrt{{a}+{ib}}}\:=\frac{\pi}{\sqrt{{z}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:{e}^{−\left(−{a}−{ib}\right){x}^{\mathrm{2}} } {dx}\:=_{\sqrt{−{a}−{ib}}{x}\:={t}} \:\:\:\:\:\int_{−\infty} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} } \:\:\:\frac{{dt}}{\sqrt{−{a}−{ib}}}\:=\frac{\pi}{\sqrt{−{a}−{ib}}} \\ $$$$=\frac{\pi}{\sqrt{−\mathrm{1}}\sqrt{{a}+{ib}}}\:=\frac{\pi}{{i}\sqrt{{z}}}\:\Rightarrow\:\mathrm{2}{I}\:=\frac{\pi}{\mathrm{2}\sqrt{{z}}}\:+\frac{\pi}{\mathrm{2}{i}\sqrt{{z}}}\:=\frac{\pi}{\mathrm{2}\sqrt{{z}}}\:−\frac{{i}\pi}{\mathrm{2}\sqrt{{z}}}\:\:\Rightarrow{I}\:=\frac{\pi}{\mathrm{4}}\frac{\mathrm{1}−{i}}{\sqrt{{z}}} \\ $$$${if}\:{we}\:{take}\:{z}\:={re}^{{i}\theta} \:\:\:{we}\:{get}\:{I}\:=\frac{\pi}{\mathrm{4}}\:\frac{\mathrm{1}−{i}}{\sqrt{{r}}{e}^{{i}\frac{\theta}{\mathrm{2}}} }\:=\frac{\pi}{\mathrm{4}\sqrt{{r}}}\:\:\sqrt{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:{e}^{−\frac{{i}\theta}{\mathrm{2}}} \:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}\sqrt{{r}}}\:{e}^{{i}\left(−\frac{\pi}{\mathrm{4}}−\frac{\theta}{\mathrm{2}}\right)} \\ $$$${I}\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}\sqrt{{r}}}\:{e}^{−{i}\left(\frac{\pi}{\mathrm{4}}+\frac{\theta}{\mathrm{2}}\right)} \:\:. \\ $$

Commented by Smail last updated on 05/Jun/19

You mean  ∫_(−∞) ^∞ e^(−t^2 ) dt=(√π)   not π

$${You}\:{mean}\:\:\int_{−\infty} ^{\infty} {e}^{−{t}^{\mathrm{2}} } {dt}=\sqrt{\pi}\:\:\:{not}\:\pi \\ $$

Commented by maxmathsup by imad last updated on 08/Jun/19

yes sir  ....

$${yes}\:{sir}\:\:.... \\ $$

Commented by maxmathsup by imad last updated on 08/Jun/19

due to  ∫_(−∞) ^(+∞)   e^(−t^2 ) dt =(√π)    the final answer is I =((√(2π))/(4(√r))) e^(−i((π/4)+(θ/2)))

$${due}\:{to}\:\:\int_{−\infty} ^{+\infty} \:\:{e}^{−{t}^{\mathrm{2}} } {dt}\:=\sqrt{\pi}\:\:\:\:{the}\:{final}\:{answer}\:{is}\:{I}\:=\frac{\sqrt{\mathrm{2}\pi}}{\mathrm{4}\sqrt{{r}}}\:{e}^{−{i}\left(\frac{\pi}{\mathrm{4}}+\frac{\theta}{\mathrm{2}}\right)} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com