Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 61528 by maxmathsup by imad last updated on 04/Jun/19

find  ∫_0 ^∞   cos(zx^2 )dx with z ∈ C .

find0cos(zx2)dxwithzC.

Commented by maxmathsup by imad last updated on 04/Jun/19

let I =∫_0 ^∞  cos(zx^2 )dx ⇒2I =∫_(−∞) ^(+∞)  cos(zx^2 )  let z =a+ib ⇒  2I =∫_(−∞) ^(+∞)  cos((a+ib)x^2 )   but   cos(z) =ch(iz) ⇒  2I =∫_(−∞) ^(+∞)  ch(i(a+ib)x^2 )dx =∫_(−∞) ^(+∞)  ch(iax^2  −bx^2 )dx  =∫_(−∞) ^(+∞)    ((e^(i(iax^2 −bx^2 ))  +e^(−i(iax^2 −bx^2 )) )/2) dx  =∫_(−∞) ^(+∞)    ((e^(−ax^2 −ibx^2 ) +e^(ax^2 +ibx^2 ) )/2) dx =(1/2) ∫_(−∞) ^(+∞)   e^(−(a+ib)x^2 ) dx +(1/2) ∫_(−∞) ^(+∞)   e^(−(−a−ib)x^2 ) dx  ∫_(−∞) ^(+∞)   e^(−(a+ib)x^2 ) dx=_((√(a+ib))x =t)       ∫_(−∞) ^(+∞)   e^(−t^2 )   (dt/(√(a+ib))) =(π/(√(a+ib))) =(π/(√z))  ∫_(−∞) ^(+∞)    e^(−(−a−ib)x^2 ) dx =_((√(−a−ib))x =t)      ∫_(−∞) ^(+∞)  e^(−t^2 )    (dt/(√(−a−ib))) =(π/(√(−a−ib)))  =(π/((√(−1))(√(a+ib)))) =(π/(i(√z))) ⇒ 2I =(π/(2(√z))) +(π/(2i(√z))) =(π/(2(√z))) −((iπ)/(2(√z)))  ⇒I =(π/4)((1−i)/(√z))  if we take z =re^(iθ)    we get I =(π/4) ((1−i)/((√r)e^(i(θ/2)) )) =(π/(4(√r)))  (√2)e^(−((iπ)/4))  e^(−((iθ)/2))  =((π(√2))/(4(√r))) e^(i(−(π/4)−(θ/2)))   I = ((π(√2))/(4(√r))) e^(−i((π/4)+(θ/2)))   .

letI=0cos(zx2)dx2I=+cos(zx2)letz=a+ib2I=+cos((a+ib)x2)butcos(z)=ch(iz)2I=+ch(i(a+ib)x2)dx=+ch(iax2bx2)dx=+ei(iax2bx2)+ei(iax2bx2)2dx=+eax2ibx2+eax2+ibx22dx=12+e(a+ib)x2dx+12+e(aib)x2dx+e(a+ib)x2dx=a+ibx=t+et2dta+ib=πa+ib=πz+e(aib)x2dx=aibx=t+et2dtaib=πaib=π1a+ib=πiz2I=π2z+π2iz=π2ziπ2zI=π41izifwetakez=reiθwegetI=π41ireiθ2=π4r2eiπ4eiθ2=π24rei(π4θ2)I=π24rei(π4+θ2).

Commented by Smail last updated on 05/Jun/19

You mean  ∫_(−∞) ^∞ e^(−t^2 ) dt=(√π)   not π

Youmeanet2dt=πnotπ

Commented by maxmathsup by imad last updated on 08/Jun/19

yes sir  ....

yessir....

Commented by maxmathsup by imad last updated on 08/Jun/19

due to  ∫_(−∞) ^(+∞)   e^(−t^2 ) dt =(√π)    the final answer is I =((√(2π))/(4(√r))) e^(−i((π/4)+(θ/2)))

dueto+et2dt=πthefinalanswerisI=2π4rei(π4+θ2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com