All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 61613 by naka3546 last updated on 05/Jun/19
S=1+32018+520182+720183+...4S−S2=?
Commented by maxmathsup by imad last updated on 05/Jun/19
letS(x)=∑n=∞0(2n+1)xn⇒S=S(12018)(∣x∣<1)S(x)=2∑n=0∞nxn+∑n=0∞xn∑n=0∞xn=11−x⇒∑n=1∞nxn−1=1(1−x)2⇒∑n=1∞nxn=x(1−x)2⇒S(x)=2x(1−x)2+1(1−x)=2x+(1−x)(1−x)2=x+1(1−x)2⇒S=S(12018)=12018+1(1−12018)2=20192018(20172018)2=2018×2019(2017)2⇒4S−S2=4×2018×2019(2017)2−20182×20192(2017)4resttofinishthecalculus...
Answered by ajfour last updated on 05/Jun/19
S=1+32018+520182+720183+...2018S=2018+3+52018+720182+...⇒2017S=2018+21−12018⇒S=20182017×20192017.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com