Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 61648 by maxmathsup by imad last updated on 05/Jun/19

calculate ∫∫_W  (x^2 −2y^2 )(√(x^2 +y^2 +3))dxdy    with  W ={ (x,y) ∈ R^2   /    1≤x ≤(√3)  and   x^2  +y^2 −2y ≤ 2 }

calculateW(x22y2)x2+y2+3dxdywithW={(x,y)R2/1x3andx2+y22y2}

Commented by maxmathsup by imad last updated on 06/Jun/19

we have  x^2  +y^2 −2y ≤2 ⇒x^2 +y^2 −2y +1−1 ≤2 ⇒x^2  +(y−1)^2  ≤3  let use the diffeomorphism   x=rcosθ  and y−1 =rsinθ  we have  1≤x^2 ≤3 ⇒1≤x^2  +(y−1)^2 ≤6 ⇒1≤r^2 ≤6  ⇒1≤r≤(√6)  ∫∫_W (x^2 −2y^2 )(√(x^2  +y^2  +3))dxdy =∫∫_(1≤r≤(√6)    and   −(π/2)≤θ≤(π/2)) (r^2 cos^2 θ−2r^2 sin^2 θ)(√(r^2 +3))rdrdθ  =∫_1 ^(√6) r^3 (√(3+r^2 ))dr ∫_(−(π/2)) ^(π/2) (cos^2 θ −2sin^2 θ)dθ  ∫_(−(π/2)) ^(π/2) (cos^2 θ −2sin^2 θ)dθ =∫_(−(π/2)) ^(π/2) (((1+cos(2θ))/2) −(1−cos(2θ))dθ  =(1/2) ∫_(−((.π)/2)) ^(π/2)  (1+cos(2θ)−2 +2cos(2θ))dθ =(1/4) ∫_0 ^(π/2) {3cosθ −1}dθ  = (3/4)[sinθ]_0 ^(π/2)  −(π/8) =(3/4) −(π/8) . chang.(√(3+r^2 ))=t give 3+r^2 =t^2  ⇒rdr =tdt  ∫_1 ^(√6) r^3 (√(3+r^2 ))dr = ∫_2 ^3  (t^2 −3)t dt = ∫_2 ^3 (t^3 −3t)dt =[(1/4)t^4 −(3/2)t^2 ]_2 ^3   =(3^4 /4) −(3^3 /2) −(2^4 /2) +(3/2).2^2   =((81)/4) −((27)/2) −8 +6 =((81−54)/4) −2 =((81−62)/4) =((18)/4) =(9/2) ⇒  ⇒ I = (9/2)((3/4)−(π/8)) =((27)/8) −((9π)/(16)) .

wehavex2+y22y2x2+y22y+112x2+(y1)23letusethediffeomorphismx=rcosθandy1=rsinθwehave1x231x2+(y1)261r261r6W(x22y2)x2+y2+3dxdy=1r6andπ2θπ2(r2cos2θ2r2sin2θ)r2+3rdrdθ=16r33+r2drπ2π2(cos2θ2sin2θ)dθπ2π2(cos2θ2sin2θ)dθ=π2π2(1+cos(2θ)2(1cos(2θ))dθ=12.π2π2(1+cos(2θ)2+2cos(2θ))dθ=140π2{3cosθ1}dθ=34[sinθ]0π2π8=34π8.chang.3+r2=tgive3+r2=t2rdr=tdt16r33+r2dr=23(t23)tdt=23(t33t)dt=[14t432t2]23=344332242+32.22=8142728+6=815442=81624=184=92I=92(34π8)=2789π16.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com