All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 61648 by maxmathsup by imad last updated on 05/Jun/19
calculate∫∫W(x2−2y2)x2+y2+3dxdywithW={(x,y)∈R2/1⩽x⩽3andx2+y2−2y⩽2}
Commented by maxmathsup by imad last updated on 06/Jun/19
wehavex2+y2−2y⩽2⇒x2+y2−2y+1−1⩽2⇒x2+(y−1)2⩽3letusethediffeomorphismx=rcosθandy−1=rsinθwehave1⩽x2⩽3⇒1⩽x2+(y−1)2⩽6⇒1⩽r2⩽6⇒1⩽r⩽6∫∫W(x2−2y2)x2+y2+3dxdy=∫∫1⩽r⩽6and−π2⩽θ⩽π2(r2cos2θ−2r2sin2θ)r2+3rdrdθ=∫16r33+r2dr∫−π2π2(cos2θ−2sin2θ)dθ∫−π2π2(cos2θ−2sin2θ)dθ=∫−π2π2(1+cos(2θ)2−(1−cos(2θ))dθ=12∫−.π2π2(1+cos(2θ)−2+2cos(2θ))dθ=14∫0π2{3cosθ−1}dθ=34[sinθ]0π2−π8=34−π8.chang.3+r2=tgive3+r2=t2⇒rdr=tdt∫16r33+r2dr=∫23(t2−3)tdt=∫23(t3−3t)dt=[14t4−32t2]23=344−332−242+32.22=814−272−8+6=81−544−2=81−624=184=92⇒⇒I=92(34−π8)=278−9π16.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com