Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 61650 by maxmathsup by imad last updated on 05/Jun/19

solve inside N^2     (x+1)(y+2) =2xy

$${solve}\:{inside}\:{N}^{\mathrm{2}} \:\:\:\:\left({x}+\mathrm{1}\right)\left({y}+\mathrm{2}\right)\:=\mathrm{2}{xy} \\ $$

Commented by kaivan.ahmadi last updated on 06/Jun/19

xy+2x+y+2−2xy=0  xy=2x+y+2  let x=m∈N  my=2m+y+2⇒(m−1)y=2m+2⇒  y=((2m+2)/(m−1))=2(((m+1)/(m−1)))=2(1+(2/(m−1)))=  2+(4/(m−1))  m−1≤4⇒m≤5  m=1 is not true  m=2⇒y=6  m=3⇒y=4  m=4 is not true  m=5⇒y=3  so   (2,6)   (3,4)    (5,3) are answer

$${xy}+\mathrm{2}{x}+{y}+\mathrm{2}−\mathrm{2}{xy}=\mathrm{0} \\ $$$${xy}=\mathrm{2}{x}+{y}+\mathrm{2} \\ $$$${let}\:{x}={m}\in{N} \\ $$$${my}=\mathrm{2}{m}+{y}+\mathrm{2}\Rightarrow\left({m}−\mathrm{1}\right){y}=\mathrm{2}{m}+\mathrm{2}\Rightarrow \\ $$$${y}=\frac{\mathrm{2}{m}+\mathrm{2}}{{m}−\mathrm{1}}=\mathrm{2}\left(\frac{{m}+\mathrm{1}}{{m}−\mathrm{1}}\right)=\mathrm{2}\left(\mathrm{1}+\frac{\mathrm{2}}{{m}−\mathrm{1}}\right)= \\ $$$$\mathrm{2}+\frac{\mathrm{4}}{{m}−\mathrm{1}} \\ $$$${m}−\mathrm{1}\leqslant\mathrm{4}\Rightarrow{m}\leqslant\mathrm{5} \\ $$$${m}=\mathrm{1}\:{is}\:{not}\:{true} \\ $$$${m}=\mathrm{2}\Rightarrow{y}=\mathrm{6} \\ $$$${m}=\mathrm{3}\Rightarrow{y}=\mathrm{4} \\ $$$${m}=\mathrm{4}\:{is}\:{not}\:{true} \\ $$$${m}=\mathrm{5}\Rightarrow{y}=\mathrm{3} \\ $$$${so}\: \\ $$$$\left(\mathrm{2},\mathrm{6}\right)\:\:\:\left(\mathrm{3},\mathrm{4}\right)\:\:\:\:\left(\mathrm{5},\mathrm{3}\right)\:{are}\:{answer} \\ $$$$ \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 06/Jun/19

(x+1)(y+2)=2xy ⇒xy +2x+y+2 =2xy ⇒xy +2x+y+2−2xy =0 ⇒  2x+y+2−xy =0    let consider congruence modulo 2( soving in Z/2Z) ⇒  2^−  x^−  +y^−  +2^− −x^− y^− =0 ⇒y^− (1^− −x^− ) =0 ⇒y^− =0 or x^− =1^−   y =2n ⇒(x+1)(2n+2)=2(2n)x ⇒2nx +2x +2n +2 =4nx ⇒  (2n+2−4n)x +2n +2 =0 ⇒(2−2n)x =−2n−2 ⇒(n−1)x =n+1 ⇒x =((n+1)/(n−1))  x ∈ N ⇒((n−1 +2)/(n−1)) ∈N ⇒1+(2/(n−1)) ∈N ⇒n−1/2 ⇒n=2 or n=3 ⇒x=3 or x=2  ⇒y=4 or y=6  so the couples are (3,4) and  (2,6)  x^− =1^−  ⇒x =2n+1   (e) ⇒(2n+2)(y+2) =2(2n+1)y ⇒  (n+1)(y+2)=(2n+1)y ⇒(n+1)y +2n+2 =(2n+1)y ⇒  (n+1)y =2(n+1) ⇒y =2 ⇒4(x+1)=4x ⇒4=0  impossibe

$$\left({x}+\mathrm{1}\right)\left({y}+\mathrm{2}\right)=\mathrm{2}{xy}\:\Rightarrow{xy}\:+\mathrm{2}{x}+{y}+\mathrm{2}\:=\mathrm{2}{xy}\:\Rightarrow{xy}\:+\mathrm{2}{x}+{y}+\mathrm{2}−\mathrm{2}{xy}\:=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{2}{x}+{y}+\mathrm{2}−{xy}\:=\mathrm{0}\:\:\:\:{let}\:{consider}\:{congruence}\:{modulo}\:\mathrm{2}\left(\:{soving}\:{in}\:{Z}/\mathrm{2}{Z}\right)\:\Rightarrow \\ $$$$\overset{−} {\mathrm{2}}\:\overset{−} {{x}}\:+\overset{−} {{y}}\:+\overset{−} {\mathrm{2}}−\overset{−} {{x}}\overset{−} {{y}}=\mathrm{0}\:\Rightarrow\overset{−} {{y}}\left(\overset{−} {\mathrm{1}}−\overset{−} {{x}}\right)\:=\mathrm{0}\:\Rightarrow\overset{−} {{y}}=\mathrm{0}\:{or}\:\overset{−} {{x}}=\overset{−} {\mathrm{1}} \\ $$$${y}\:=\mathrm{2}{n}\:\Rightarrow\left({x}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{2}\right)=\mathrm{2}\left(\mathrm{2}{n}\right){x}\:\Rightarrow\mathrm{2}{nx}\:+\mathrm{2}{x}\:+\mathrm{2}{n}\:+\mathrm{2}\:=\mathrm{4}{nx}\:\Rightarrow \\ $$$$\left(\mathrm{2}{n}+\mathrm{2}−\mathrm{4}{n}\right){x}\:+\mathrm{2}{n}\:+\mathrm{2}\:=\mathrm{0}\:\Rightarrow\left(\mathrm{2}−\mathrm{2}{n}\right){x}\:=−\mathrm{2}{n}−\mathrm{2}\:\Rightarrow\left({n}−\mathrm{1}\right){x}\:={n}+\mathrm{1}\:\Rightarrow{x}\:=\frac{{n}+\mathrm{1}}{{n}−\mathrm{1}} \\ $$$${x}\:\in\:{N}\:\Rightarrow\frac{{n}−\mathrm{1}\:+\mathrm{2}}{{n}−\mathrm{1}}\:\in{N}\:\Rightarrow\mathrm{1}+\frac{\mathrm{2}}{{n}−\mathrm{1}}\:\in{N}\:\Rightarrow{n}−\mathrm{1}/\mathrm{2}\:\Rightarrow{n}=\mathrm{2}\:{or}\:{n}=\mathrm{3}\:\Rightarrow{x}=\mathrm{3}\:{or}\:{x}=\mathrm{2} \\ $$$$\Rightarrow{y}=\mathrm{4}\:{or}\:{y}=\mathrm{6}\:\:{so}\:{the}\:{couples}\:{are}\:\left(\mathrm{3},\mathrm{4}\right)\:{and}\:\:\left(\mathrm{2},\mathrm{6}\right) \\ $$$$\overset{−} {{x}}=\overset{−} {\mathrm{1}}\:\Rightarrow{x}\:=\mathrm{2}{n}+\mathrm{1}\:\:\:\left({e}\right)\:\Rightarrow\left(\mathrm{2}{n}+\mathrm{2}\right)\left({y}+\mathrm{2}\right)\:=\mathrm{2}\left(\mathrm{2}{n}+\mathrm{1}\right){y}\:\Rightarrow \\ $$$$\left({n}+\mathrm{1}\right)\left({y}+\mathrm{2}\right)=\left(\mathrm{2}{n}+\mathrm{1}\right){y}\:\Rightarrow\left({n}+\mathrm{1}\right){y}\:+\mathrm{2}{n}+\mathrm{2}\:=\left(\mathrm{2}{n}+\mathrm{1}\right){y}\:\Rightarrow \\ $$$$\left({n}+\mathrm{1}\right){y}\:=\mathrm{2}\left({n}+\mathrm{1}\right)\:\Rightarrow{y}\:=\mathrm{2}\:\Rightarrow\mathrm{4}\left({x}+\mathrm{1}\right)=\mathrm{4}{x}\:\Rightarrow\mathrm{4}=\mathrm{0}\:\:{impossibe}\: \\ $$

Commented by maxmathsup by imad last updated on 06/Jun/19

(5,3)is also answer.idont get it...!

$$\left(\mathrm{5},\mathrm{3}\right){is}\:{also}\:{answer}.{idont}\:{get}\:{it}...! \\ $$

Commented by maxmathsup by imad last updated on 06/Jun/19

thanks sir Ahmadi.

$${thanks}\:{sir}\:{Ahmadi}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com