Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 61651 by maxmathsup by imad last updated on 05/Jun/19

let p(x) =(x+i(√3))^n +(x−i(√3))^n     with x real  1) simlify p(x)  2) find the roots of P(x)  3)decompose inside C[x]  p(x)  4) calculate ∫_0 ^1 p(x)dx

letp(x)=(x+i3)n+(xi3)nwithxreal1)simlifyp(x)2)findtherootsofP(x)3)decomposeinsideC[x]p(x)4)calculate01p(x)dx

Commented by maxmathsup by imad last updated on 06/Jun/19

1)  we have P(x) =Σ_(k=0) ^n  C_n ^k (i(√3))^k  x^(n−k)  +Σ_(k=0) ^n  C_n ^k (−i(√3))^k  x^(n−k)   =Σ_(k=0) ^n  C_n ^k { i^k  +(−i)^k )3^(k/2)  x^(n−k)  =Σ_(k=2p) (...) +Σ_(k=2p+1) (...)  =2Σ_(p=0) ^([(n/2)])   C_n ^(2p)   (−1)^p  3^p  x^(n−2p)  = 2 Σ_(p=0) ^([(n/2)]) (−3)^p  C_n ^(2p)  x^(n−2p)   another way with arctan  we have P(x) = 2 Re((x+i(√3))^n )   but    ∣x+i(√3)∣ =(√(x^2  +3)) ⇒  x+i(√3)=(√(x^2  +3))((x/(√(x^2  +3))) +i ((√3)/(√(x^(2 ) +3)))) =r e^(iθ)  ⇒r =(√(x^2  +3))  and  tanθ =((√3)/x)  (   we suppose x≠0) ⇒ θ arctan(((√3)/x)) ⇒x+i(√3)=(√(x^2  +3)) e^(iarctan(((√3)/x)))  ⇒  (x+i(√3))^n  =(x^2  +3)^(n/2)   e^(in arctan(((√3)/x)))  ⇒P(x) =2(x^2  +3)^(n/2)  cos(narctan(((√3)/x)))

1)wehaveP(x)=k=0nCnk(i3)kxnk+k=0nCnk(i3)kxnk=k=0nCnk{ik+(i)k)3k2xnk=k=2p(...)+k=2p+1(...)=2p=0[n2]Cn2p(1)p3pxn2p=2p=0[n2](3)pCn2pxn2panotherwaywitharctanwehaveP(x)=2Re((x+i3)n)butx+i3=x2+3x+i3=x2+3(xx2+3+i3x2+3)=reiθr=x2+3andtanθ=3x(wesupposex0)θarctan(3x)x+i3=x2+3eiarctan(3x)(x+i3)n=(x2+3)n2einarctan(3x)P(x)=2(x2+3)n2cos(narctan(3x))

Commented by maxmathsup by imad last updated on 06/Jun/19

2) P(x)=0 ⇔ (x−i(√3))^n  =−(x+i(√3))^n  ⇔(((x−i(√3))/(x+i(√3))))^n  =−1 ⇔ Z^n  =−1 with  Z =((x−i(√3))/(x+i(√3))) ⇒Zx+i(√3)Z =x−i(√3) ⇒(Z−1)x =−i(√3)Z −i(√3) ⇒  (Z−1)x =−i(√3)(Z+1) ⇒x =i(√3)((1+Z)/(1−Z))  Z^n  =−1 ⇒ Z^n  =e^(i(2k+1)π)  ⇒Z_k =e^(i(((2k+1)π)/n))    and  k∈[[0,n−1]] ⇒the roots of P(x)  are x_k =i(√3)  ((1+e^((i(2k+1)π)/n) )/(1−e^((i(2k+1)π)/n) ))  let skmplify  x_k   x_k =i(√3)((1+cos((2k+1)(π/n))+2i sin((2k+1)(π/(2n)))cos((2k+1)(π/(2n))))/(1−cos((2k+1)(π/n))−2i sin(2k+1)(π/(2n)))cos((2k+1)(π/(2n)))))  =i(√3)((2cos^2 ((2k+1)(π/(2n))) +2i sin((2k+1)(π/(2n)))cos((2k+1)(π/(2n))))/(2sin^2 (l2k+1)(π/(2n))−2i sin(2k+1)(π/(2n))) cos(2k+1)(π/(2n))))  =i(√3)((cos(2k+1)(π/(2n))(e^(i(2k+1)(π/(2n))) ))/(−isin(2k+1)(π/(2n))( e^(i(2k+1)(π/(2n))) ))) =−(√3)cotan((2k+1)(π/(2n)))   k∈[[0,n−1]]  ×

2)P(x)=0(xi3)n=(x+i3)n(xi3x+i3)n=1Zn=1withZ=xi3x+i3Zx+i3Z=xi3(Z1)x=i3Zi3(Z1)x=i3(Z+1)x=i31+Z1ZZn=1Zn=ei(2k+1)πZk=ei(2k+1)πnandk[[0,n1]]therootsofP(x)arexk=i31+ei(2k+1)πn1ei(2k+1)πnletskmplifyxkxk=i31+cos((2k+1)πn)+2isin((2k+1)π2n)cos((2k+1)π2n)1cos((2k+1)πn)2isin(2k+1)π2n)cos((2k+1)π2n)=i32cos2((2k+1)π2n)+2isin((2k+1)π2n)cos((2k+1)π2n)2sin2(l2k+1)π2n2isin(2k+1)π2n)cos(2k+1)π2n=i3cos(2k+1)π2n(ei(2k+1)π2n)isin(2k+1)π2n(ei(2k+1)π2n)=3cotan((2k+1)π2n)k[[0,n1]]×

Commented by maxmathsup by imad last updated on 06/Jun/19

3) P(x) =λΠ_(k=0) ^(n−1) (x−Z_k ) =λ Π_(k=0) ^(n−1) (x+(√3)cotan((2k+1)(π/(2n))))  λ is thedominent coefficient  of P(x).

3)P(x)=λk=0n1(xZk)=λk=0n1(x+3cotan((2k+1)π2n))λisthedominentcoefficientofP(x).

Commented by maxmathsup by imad last updated on 06/Jun/19

4) we have P(x) =2 Σ_(p=0) ^([(n/2)]) (−3)^p  C_n ^(2p)  x^(n−2p)  ⇒  ∫_0 ^1   P(x)dx =2 Σ_(p=0) ^([(n/2)]) (−3)^p  C_n ^(2p)    [(1/(n−2p +1))x^(n−2p+1) ]_0 ^1   = 2 Σ_(p=0) ^([(n/2)])    (((−3)^p  C_n ^(2p) )/(n−2p+1)) .

4)wehaveP(x)=2p=0[n2](3)pCn2pxn2p01P(x)dx=2p=0[n2](3)pCn2p[1n2p+1xn2p+1]01=2p=0[n2](3)pCn2pn2p+1.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com