Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 61652 by maxmathsup by imad last updated on 05/Jun/19

solve inside C  z^4  =((1−i)/(1+i(√3)))

$${solve}\:{inside}\:{C}\:\:{z}^{\mathrm{4}} \:=\frac{\mathrm{1}−{i}}{\mathrm{1}+{i}\sqrt{\mathrm{3}}} \\ $$

Commented by maxmathsup by imad last updated on 06/Jun/19

we have ∣1−i∣=(√2) ⇒1−i =(√2)e^(−((iπ)/4))   ∣1+i(√3)∣ =2 ⇒1+i(√3)=2{(1/2) +((i(√3))/2)} =2 e^((iπ)/3)  ⇒((1−i)/(1+i(√3))) =((√2)/2) e^(−((iπ)/4))  e^(−((iπ)/3))   =((√2)/2) e^(−i((π/4)+(π/3)))  =((√2)/2) e^(−((i7π)/(12)))    let z =r e^(iθ)   (e) ⇒ r^4  e^(i4θ)  =2^(−(1/2))  e^(−i(((7π)/(12))))  ⇒r =2^(−(1/8))    and 4θ   =−((7π)/(12)) +2kπ ⇒  θ_k =−((7π)/(48)) +((kπ)/2)     and 0≤k≤3  so the solutions are   Z_k = 2^(−(1/8))  e^(i(((kπ)/2)−((7π)/(48))))      with 0≤k≤3 .

$${we}\:{have}\:\mid\mathrm{1}−{i}\mid=\sqrt{\mathrm{2}}\:\Rightarrow\mathrm{1}−{i}\:=\sqrt{\mathrm{2}}{e}^{−\frac{{i}\pi}{\mathrm{4}}} \\ $$$$\mid\mathrm{1}+{i}\sqrt{\mathrm{3}}\mid\:=\mathrm{2}\:\Rightarrow\mathrm{1}+{i}\sqrt{\mathrm{3}}=\mathrm{2}\left\{\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right\}\:=\mathrm{2}\:{e}^{\frac{{i}\pi}{\mathrm{3}}} \:\Rightarrow\frac{\mathrm{1}−{i}}{\mathrm{1}+{i}\sqrt{\mathrm{3}}}\:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{e}^{−\frac{{i}\pi}{\mathrm{4}}} \:{e}^{−\frac{{i}\pi}{\mathrm{3}}} \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{e}^{−{i}\left(\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{3}}\right)} \:=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:{e}^{−\frac{{i}\mathrm{7}\pi}{\mathrm{12}}} \:\:\:{let}\:{z}\:={r}\:{e}^{{i}\theta} \\ $$$$\left({e}\right)\:\Rightarrow\:{r}^{\mathrm{4}} \:{e}^{{i}\mathrm{4}\theta} \:=\mathrm{2}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{e}^{−{i}\left(\frac{\mathrm{7}\pi}{\mathrm{12}}\right)} \:\Rightarrow{r}\:=\mathrm{2}^{−\frac{\mathrm{1}}{\mathrm{8}}} \:\:\:{and}\:\mathrm{4}\theta\:\:\:=−\frac{\mathrm{7}\pi}{\mathrm{12}}\:+\mathrm{2}{k}\pi\:\Rightarrow \\ $$$$\theta_{{k}} =−\frac{\mathrm{7}\pi}{\mathrm{48}}\:+\frac{{k}\pi}{\mathrm{2}}\:\:\:\:\:{and}\:\mathrm{0}\leqslant{k}\leqslant\mathrm{3}\:\:{so}\:{the}\:{solutions}\:{are}\: \\ $$$${Z}_{{k}} =\:\mathrm{2}^{−\frac{\mathrm{1}}{\mathrm{8}}} \:{e}^{{i}\left(\frac{{k}\pi}{\mathrm{2}}−\frac{\mathrm{7}\pi}{\mathrm{48}}\right)} \:\:\:\:\:{with}\:\mathrm{0}\leqslant{k}\leqslant\mathrm{3}\:. \\ $$

Answered by MJS last updated on 06/Jun/19

((1−i)/(1+i(√3)))=((1−(√3))/4)−i((1+(√3))/4)=((√2)/2)e^(−i((7π)/(12)))   z^4 =((√2)/2)e^(−i((7π)/(12)))   z=(1/(2)^(1/8) ) e^(iπ×{−((31)/(48)), −(7/(48)), ((17)/(48)), ((41)/(48))})

$$\frac{\mathrm{1}−\mathrm{i}}{\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}}=\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{4}}−\mathrm{i}\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{4}}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{e}^{−\mathrm{i}\frac{\mathrm{7}\pi}{\mathrm{12}}} \\ $$$${z}^{\mathrm{4}} =\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{e}^{−\mathrm{i}\frac{\mathrm{7}\pi}{\mathrm{12}}} \\ $$$${z}=\frac{\mathrm{1}}{\sqrt[{\mathrm{8}}]{\mathrm{2}}}\:\mathrm{e}^{\mathrm{i}\pi×\left\{−\frac{\mathrm{31}}{\mathrm{48}},\:−\frac{\mathrm{7}}{\mathrm{48}},\:\frac{\mathrm{17}}{\mathrm{48}},\:\frac{\mathrm{41}}{\mathrm{48}}\right\}} \\ $$

Commented by maxmathsup by imad last updated on 06/Jun/19

thanks sirmjs

$${thanks}\:{sirmjs} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com