All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 61660 by maxmathsup by imad last updated on 05/Jun/19
letUn=∫0∞dt(1+t3)ndt(n⩾1)1)calculateUn+1Un2)studytheserieΣln(Un+1Un)andprovethatlimn→+∞Un=0
Commented by prof Abdo imad last updated on 07/Jun/19
1)wehaveUn=∫0∞1+t3(1+t3)n+1dt=∫0∞dt(1+t3)n+1+∫0∞t3(1+t3)n+1dt∫0∞dt(1+t3)n+1=Un+1∫0∞t3(1+t3)n+1dt=13∫0∞t(3t2)(1+t3)−n−1dtbypartsu=tandv,=(3t2)(1+t3)−n−1⇒∫0∞t3(1+t3)n+1dt=13{[−tn(1+t3)−n]0∞+∫0∞1n(1+t3)−ndt}=13n∫0∞dt(1+t3)n=13nUn⇒Un=Un+1+13nUn⇒(1−13n)Un=Un+1⇒(3n−13n)Un=Un+1⇒Un+1Un=1−13n
Terms of Service
Privacy Policy
Contact: info@tinkutara.com