Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 61660 by maxmathsup by imad last updated on 05/Jun/19

let U_n = ∫_0 ^∞     (dt/((1+t^3 )^n )) dt    (n≥1)  1) calculate (U_(n+1) /U_n )  2) study the serie Σln((U_(n+1) /U_n ))  and prove  that lim_(n→+∞) U_n =0

$${let}\:{U}_{{n}} =\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}} }\:{dt}\:\:\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} } \\ $$$$\left.\mathrm{2}\right)\:{study}\:{the}\:{serie}\:\Sigma{ln}\left(\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} }\right)\:\:{and}\:{prove}\:\:{that}\:{lim}_{{n}\rightarrow+\infty} {U}_{{n}} =\mathrm{0} \\ $$

Commented by prof Abdo imad last updated on 07/Jun/19

1) we have  U_n =∫_0 ^∞   ((1+t^3 )/((1+t^3 )^(n+1) )) dt  =∫_0 ^∞   (dt/((1+t^3 )^(n+1) )) +∫_0 ^∞   (t^3 /((1+t^3 )^(n+1) )) dt  ∫_0 ^∞   (dt/((1+t^3 )^(n+1) )) =U_(n+1)   ∫_0 ^∞ (t^3 /((1+t^3 )^(n+1) )) dt = (1/3)∫_0 ^∞  t (3t^2 )(1+t^3 )^(−n−1)  dt by parts  u =t    and v^,  =(3t^2 )(1+t^3 )^(−n−1)  ⇒  ∫_0 ^∞   (t^3 /((1+t^3 )^(n+1) )) dt =  (1/3){  [−(t/n)(1+t^3 )^(−n) ]_0 ^∞  +∫_0 ^∞   (1/n)(1+t^3 )^(−n) dt}  =(1/(3n)) ∫_0 ^∞    (dt/((1+t^3 )^n )) =(1/(3n)) U_n  ⇒  U_n = U_(n+1) +(1/(3n)) U_n  ⇒(1−(1/(3n)))U_n =U_(n+1)   ⇒  (((3n−1)/(3n)))U_n =U_(n+1)  ⇒(U_(n+1) /U_n ) = 1−(1/(3n))

$$\left.\mathrm{1}\right)\:{we}\:{have}\:\:{U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}+{t}^{\mathrm{3}} }{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:+\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\mathrm{3}} }{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:{dt} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:={U}_{{n}+\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{t}^{\mathrm{3}} }{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:{dt}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} \:{t}\:\left(\mathrm{3}{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{−{n}−\mathrm{1}} \:{dt}\:{by}\:{parts} \\ $$$${u}\:={t}\:\:\:\:{and}\:{v}^{,} \:=\left(\mathrm{3}{t}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{−{n}−\mathrm{1}} \:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\mathrm{3}} }{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}+\mathrm{1}} }\:{dt}\:= \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\left\{\:\:\left[−\frac{{t}}{{n}}\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{−{n}} \right]_{\mathrm{0}} ^{\infty} \:+\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}}\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{−{n}} {dt}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}{n}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{3}} \right)^{{n}} }\:=\frac{\mathrm{1}}{\mathrm{3}{n}}\:{U}_{{n}} \:\Rightarrow \\ $$$${U}_{{n}} =\:{U}_{{n}+\mathrm{1}} +\frac{\mathrm{1}}{\mathrm{3}{n}}\:{U}_{{n}} \:\Rightarrow\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}{n}}\right){U}_{{n}} ={U}_{{n}+\mathrm{1}} \:\:\Rightarrow \\ $$$$\left(\frac{\mathrm{3}{n}−\mathrm{1}}{\mathrm{3}{n}}\right){U}_{{n}} ={U}_{{n}+\mathrm{1}} \:\Rightarrow\frac{{U}_{{n}+\mathrm{1}} }{{U}_{{n}} }\:=\:\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com