All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 61661 by maxmathsup by imad last updated on 05/Jun/19
1)calculate∫∫R+2dxdy(1+x2)(1+y2)2)findthevalueof∫0∞ln(x)x2−1dx.
Commented by maxmathsup by imad last updated on 07/Jun/19
1)∫∫R+2dxdy(1+x2)(1+y2)=∫0∞dx1+x2.∫0∞dy1+y2=π2.π2=π242)letA=∫0∞ln(x)x2−1⇒−A=∫0∞ln(x)1−x2dx=∫01ln(x)1−x2dx+∫1+∞ln(x)1−x2dx∫01ln(x)1−x2dx=∫01lnx(∑n=0∞x2n)dx=∑n=0∞∫01x2nln(x)dxbyparts∫01x2nln(x)dx=[12n+1x2n+1ln(x)]01−∫011(2n+1)x2ndx=−1(2n+1)2⇒∫01ln(x)1−x2dx=−∑n=0∞1(2n+1)2∑n=1∞1n2=14∑n=1∞1n2+∑n=0∞1(2n+1)2⇒∑n=0∞1(2n+1)2=34π26=π28⇒∫01ln(x)1−x2dx=−π28∫1+∞ln(x)1−x2dx=x=1t−∫01−ln(t)1−1t2(−dtt2)=−∫01ln(t)t2−1dt=∫01ln(t)1−t2dt=−π28⇒−A=−π28−π28⇒A=π24.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com