Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 61661 by maxmathsup by imad last updated on 05/Jun/19

1) calculate ∫∫_R^+^2        ((dxdy)/((1+x^2 )(1+y^2 )))  2) find the value of ∫_0 ^∞  ((ln(x))/(x^2 −1)) dx .

1)calculateR+2dxdy(1+x2)(1+y2)2)findthevalueof0ln(x)x21dx.

Commented by maxmathsup by imad last updated on 07/Jun/19

1) ∫∫_R^+^2       ((dxdy)/((1+x^2 )(1+y^2 ))) =∫_0 ^∞   (dx/(1+x^2 )) .∫_0 ^∞  (dy/(1+y^2 )) =(π/2).(π/2) =(π^2 /4)  2) let A =∫_0 ^∞   ((ln(x))/(x^2 −1)) ⇒−A =∫_0 ^∞   ((ln(x))/(1−x^2 ))dx =∫_0 ^1  ((ln(x))/(1−x^2 ))dx +∫_1 ^(+∞)  ((ln(x))/(1−x^2 )) dx  ∫_0 ^1  ((ln(x))/(1−x^2 ))dx =∫_0 ^1 lnx(Σ_(n=0) ^∞  x^(2n) )dx =Σ_(n=0) ^∞  ∫_0 ^1  x^(2n) ln(x)dx    by parts  ∫_0 ^1  x^(2n) ln(x)dx =[(1/(2n+1))x^(2n+1) ln(x)]_0 ^1  −∫_0 ^1  (1/((2n+1)))x^(2n)  dx  =−(1/((2n+1)^2 )) ⇒∫_0 ^1   ((ln(x))/(1−x^2 ))dx =−Σ_(n=0) ^∞   (1/((2n+1)^2 ))  Σ_(n=1) ^∞  (1/n^2 ) =(1/4) Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞   (1/((2n+1)^2 )) ⇒Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(3/4)(π^2 /6) =(π^2 /8) ⇒  ∫_0 ^1  ((ln(x))/(1−x^2 ))dx =−(π^2 /8)  ∫_1 ^(+∞)  ((ln(x))/(1−x^2 )) dx =_(x =(1/t))    − ∫_0 ^1    ((−ln(t))/(1−(1/t^2 ))) (−(dt/t^2 )) =−∫_0 ^1  ((ln(t))/(t^2 −1))dt =∫_0 ^1  ((ln(t))/(1−t^2 )) dt =−(π^2 /8) ⇒  −A =−(π^2 /8)−(π^2 /8) ⇒A =(π^2 /4) .

1)R+2dxdy(1+x2)(1+y2)=0dx1+x2.0dy1+y2=π2.π2=π242)letA=0ln(x)x21A=0ln(x)1x2dx=01ln(x)1x2dx+1+ln(x)1x2dx01ln(x)1x2dx=01lnx(n=0x2n)dx=n=001x2nln(x)dxbyparts01x2nln(x)dx=[12n+1x2n+1ln(x)]01011(2n+1)x2ndx=1(2n+1)201ln(x)1x2dx=n=01(2n+1)2n=11n2=14n=11n2+n=01(2n+1)2n=01(2n+1)2=34π26=π2801ln(x)1x2dx=π281+ln(x)1x2dx=x=1t01ln(t)11t2(dtt2)=01ln(t)t21dt=01ln(t)1t2dt=π28A=π28π28A=π24.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com