All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 61662 by maxmathsup by imad last updated on 06/Jun/19
calculate∫−π4π4cosxe1x+1dx
Commented by maxmathsup by imad last updated on 07/Jun/19
letf(x)=cosxe1x+1wehavethedecompositionf(x)=f(x)+f(−x)2(even)+f(x)−f(−x)2(odd)⇒I=∫−π4π4f(x)+f(−x)2dx+∫−π4π4f(x)−f(−x)2dx=H+KK=0⇒I=∫0π4{cos(x)e1x+1+cosxe−1x+1}dx=∫0π4{e−1x+1+e1x+11+e1x+e−1x+1}cosxdx=∫0π4cos(x)dx=[sinx]0π4=22⇒I=22.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com