Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 61662 by maxmathsup by imad last updated on 06/Jun/19

calculate ∫_(−(π/4)) ^(π/4)   ((cosx)/(e^(1/x)  +1)) dx

calculateπ4π4cosxe1x+1dx

Commented by maxmathsup by imad last updated on 07/Jun/19

let f(x) =((cosx)/(e^(1/x)  +1))  we have the decomposition f(x)=((f(x)+f(−x))/2)(even) +((f(x)−f(−x))/2) (odd)  ⇒ I =∫_(−(π/4)) ^(π/4)   ((f(x)+f(−x))/2)dx + ∫_(−(π/4)) ^(π/4)  ((f(x)−f(−x))/2)dx =H +K  K =0 ⇒ I = ∫_0 ^(π/4) {((cos(x))/(e^(1/x) +1)) +((cosx)/(e^(−(1/x))  +1))}dx=∫_0 ^(π/4)  {((e^(−(1/x))  +1 +e^(1/x)  +1)/(1 +e^(1/x)  +e^(−(1/x))  +1))}cosxdx  = ∫_0 ^(π/4)  cos(x)dx =[sinx]_0 ^(π/4)  =((√2)/2)  ⇒  I =((√2)/2) .

letf(x)=cosxe1x+1wehavethedecompositionf(x)=f(x)+f(x)2(even)+f(x)f(x)2(odd)I=π4π4f(x)+f(x)2dx+π4π4f(x)f(x)2dx=H+KK=0I=0π4{cos(x)e1x+1+cosxe1x+1}dx=0π4{e1x+1+e1x+11+e1x+e1x+1}cosxdx=0π4cos(x)dx=[sinx]0π4=22I=22.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com