Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 6169 by sanusihammed last updated on 17/Jun/16

A telephone wire hangs from two points P, Q  60m apart  P, Q  are on the same level . the mid point of the telephone  wire is  3m  below the level of P, Q. Assuming that it hangs in   form of a curve ,  find it equation.    please help. thanks for your time.

$${A}\:{telephone}\:{wire}\:{hangs}\:{from}\:{two}\:{points}\:{P},\:{Q}\:\:\mathrm{60}{m}\:{apart} \\ $$$${P},\:{Q}\:\:{are}\:{on}\:{the}\:{same}\:{level}\:.\:{the}\:{mid}\:{point}\:{of}\:{the}\:{telephone} \\ $$$${wire}\:{is}\:\:\mathrm{3}{m}\:\:{below}\:{the}\:{level}\:{of}\:{P},\:{Q}.\:{Assuming}\:{that}\:{it}\:{hangs}\:{in}\: \\ $$$${form}\:{of}\:{a}\:{curve}\:,\:\:{find}\:{it}\:{equation}. \\ $$$$ \\ $$$${please}\:{help}.\:{thanks}\:{for}\:{your}\:{time}. \\ $$

Answered by Yozzii last updated on 17/Jun/16

Let curve be quadratic where 0≤x≤60  f(x)=ax^2 +bx , a>0, P(0,0), Q(60,0) (P & Q lie on x−axis)  ⇒f(60)=0 or 3600a+60b=0  b=−60a........(i)  At x=0.5∣PQ∣=30, f′(30)=0 if  we assume a uniform wire lies between  P & Q.  ∴ 2a(30)+b=0 ⇒b=−60a (no new information based on quadratic assumption.)  ∴ At x=30,f(30)=−3.  ∴900a+30b=−3  300a+10b=−1..........(ii)  From (i), in (ii) 300a+10(−60a)=−1  −300a=−1⇒a=(1/(300))⇒b=((−60)/(300))=((−1)/5).  ∴ f(x)=(1/(300))x^2 −(1/5)x  (0≤x≤60)  −−−−−−−−−−−−−−−−−−−−−−−−  In general, in x−y Cartesian co−ordinates,  we can let P(a,b) and Q(a+60,b) where  a,b∈R.   This means that one can choose any arbitrary  place in the x−y plane to put this curve  for x∈[a,a+60].  Assuming the wire is uniform, the  example above indicates that the  quadratic curve is a suitable model.  Let f(x)=cx^2 +dx  (c>0).  At x=a, f(x)=b ∴ b=ca^2 +da  or d=((b−ca^2 )/a)   (a≠0).......(i)  At x=a+60, f(a+60)=b  ∴ c(a+60)^2 +d(a+60)=b  ca^2 +c(120a+3600)+da+60d=b  120c(a+30)+60d=0  2c(a+30)+d=0  2ca+60c+(b/a)−ca=0   (from  (i))  ca+60c=((−b)/a)  c=((−b)/(a(a+60)))  ⇒d=(b/a)−a×((−b)/(a(a+60)))  d=(b/a)(1+(a/(a+60)))=((b(a+60+a))/(a(a+60)))  d=((2b(a+30))/(a(a+60)))  Since c>0⇒ −60<a<0 & b>0 or b<0 & a>0 or b<0 & a<−60.  ∴ f(x)=((bx)/(a(a+60)))(−x+2a+60)  At x=a+30,  f(a+30)=((b(a+30)(−a−30+2a+60))/(a(a+60)))  f(a+30)=((b(a+30)^2 )/(a(a+60)))  f(a+30)−b=((900b)/(a(a+60)))  But f(a+30)−f(a)=−3.  ⇒300b=−a(a+60)  b=((−a(a+60))/(300)).  ∴ f(x)=((−a(a+60))/(300))×(x/(a(a+60)))(−x+2a+60)  f(x)=((x(x−2a−60))/(300))=(1/(300))x^2 −((x(a+30))/(150))  f(a)=((a(a−2a−60))/(300))=((−a(a+60))/(300))  f(a+60)=(((a+60)(−a))/(300))=b  f′(x)=((x−a−30)/(150))⇒at midpoint, f′(x)=0  or x=a+30.  We may choose to shift this curve  by an amount h vertically so that in  general  f(x)=(1/(300))x^2 −((x(a+30))/(150))+h  (a≤x≤a+60, a,h∈R).  a=0 and h=0⇒f(x)=(1/(300))x^2 −(1/5)x as was found.

$${Let}\:{curve}\:{be}\:{quadratic}\:{where}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{60} \\ $$$${f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}\:,\:{a}>\mathrm{0},\:{P}\left(\mathrm{0},\mathrm{0}\right),\:{Q}\left(\mathrm{60},\mathrm{0}\right)\:\left({P}\:\&\:{Q}\:{lie}\:{on}\:{x}−{axis}\right) \\ $$$$\Rightarrow{f}\left(\mathrm{60}\right)=\mathrm{0}\:{or}\:\mathrm{3600}{a}+\mathrm{60}{b}=\mathrm{0} \\ $$$${b}=−\mathrm{60}{a}........\left({i}\right) \\ $$$${At}\:{x}=\mathrm{0}.\mathrm{5}\mid{PQ}\mid=\mathrm{30},\:{f}'\left(\mathrm{30}\right)=\mathrm{0}\:{if} \\ $$$${we}\:{assume}\:{a}\:{uniform}\:{wire}\:{lies}\:{between} \\ $$$${P}\:\&\:{Q}. \\ $$$$\therefore\:\mathrm{2}{a}\left(\mathrm{30}\right)+{b}=\mathrm{0}\:\Rightarrow{b}=−\mathrm{60}{a}\:\left({no}\:{new}\:{information}\:{based}\:{on}\:{quadratic}\:{assumption}.\right) \\ $$$$\therefore\:{At}\:{x}=\mathrm{30},{f}\left(\mathrm{30}\right)=−\mathrm{3}. \\ $$$$\therefore\mathrm{900}{a}+\mathrm{30}{b}=−\mathrm{3} \\ $$$$\mathrm{300}{a}+\mathrm{10}{b}=−\mathrm{1}..........\left({ii}\right) \\ $$$${From}\:\left({i}\right),\:{in}\:\left({ii}\right)\:\mathrm{300}{a}+\mathrm{10}\left(−\mathrm{60}{a}\right)=−\mathrm{1} \\ $$$$−\mathrm{300}{a}=−\mathrm{1}\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{300}}\Rightarrow{b}=\frac{−\mathrm{60}}{\mathrm{300}}=\frac{−\mathrm{1}}{\mathrm{5}}. \\ $$$$\therefore\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{300}}{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{5}}{x}\:\:\left(\mathrm{0}\leqslant{x}\leqslant\mathrm{60}\right) \\ $$$$−−−−−−−−−−−−−−−−−−−−−−−− \\ $$$${In}\:{general},\:{in}\:{x}−{y}\:{Cartesian}\:{co}−{ordinates}, \\ $$$${we}\:{can}\:{let}\:{P}\left({a},{b}\right)\:{and}\:{Q}\left({a}+\mathrm{60},{b}\right)\:{where} \\ $$$${a},{b}\in\mathbb{R}.\: \\ $$$${This}\:{means}\:{that}\:{one}\:{can}\:{choose}\:{any}\:{arbitrary} \\ $$$${place}\:{in}\:{the}\:{x}−{y}\:{plane}\:{to}\:{put}\:{this}\:{curve} \\ $$$${for}\:{x}\in\left[{a},{a}+\mathrm{60}\right]. \\ $$$${Assuming}\:{the}\:{wire}\:{is}\:{uniform},\:{the} \\ $$$${example}\:{above}\:{indicates}\:{that}\:{the} \\ $$$${quadratic}\:{curve}\:{is}\:{a}\:{suitable}\:{model}. \\ $$$${Let}\:{f}\left({x}\right)={cx}^{\mathrm{2}} +{dx}\:\:\left({c}>\mathrm{0}\right). \\ $$$${At}\:{x}={a},\:{f}\left({x}\right)={b}\:\therefore\:{b}={ca}^{\mathrm{2}} +{da} \\ $$$${or}\:{d}=\frac{{b}−{ca}^{\mathrm{2}} }{{a}}\:\:\:\left({a}\neq\mathrm{0}\right).......\left({i}\right) \\ $$$${At}\:{x}={a}+\mathrm{60},\:{f}\left({a}+\mathrm{60}\right)={b} \\ $$$$\therefore\:{c}\left({a}+\mathrm{60}\right)^{\mathrm{2}} +{d}\left({a}+\mathrm{60}\right)={b} \\ $$$${ca}^{\mathrm{2}} +{c}\left(\mathrm{120}{a}+\mathrm{3600}\right)+{da}+\mathrm{60}{d}={b} \\ $$$$\mathrm{120}{c}\left({a}+\mathrm{30}\right)+\mathrm{60}{d}=\mathrm{0} \\ $$$$\mathrm{2}{c}\left({a}+\mathrm{30}\right)+{d}=\mathrm{0} \\ $$$$\mathrm{2}{ca}+\mathrm{60}{c}+\frac{{b}}{{a}}−{ca}=\mathrm{0}\:\:\:\left({from}\:\:\left({i}\right)\right) \\ $$$${ca}+\mathrm{60}{c}=\frac{−{b}}{{a}} \\ $$$${c}=\frac{−{b}}{{a}\left({a}+\mathrm{60}\right)} \\ $$$$\Rightarrow{d}=\frac{{b}}{{a}}−{a}×\frac{−{b}}{{a}\left({a}+\mathrm{60}\right)} \\ $$$${d}=\frac{{b}}{{a}}\left(\mathrm{1}+\frac{{a}}{{a}+\mathrm{60}}\right)=\frac{{b}\left({a}+\mathrm{60}+{a}\right)}{{a}\left({a}+\mathrm{60}\right)} \\ $$$${d}=\frac{\mathrm{2}{b}\left({a}+\mathrm{30}\right)}{{a}\left({a}+\mathrm{60}\right)} \\ $$$${Since}\:{c}>\mathrm{0}\Rightarrow\:−\mathrm{60}<{a}<\mathrm{0}\:\&\:{b}>\mathrm{0}\:{or}\:{b}<\mathrm{0}\:\&\:{a}>\mathrm{0}\:{or}\:{b}<\mathrm{0}\:\&\:{a}<−\mathrm{60}. \\ $$$$\therefore\:{f}\left({x}\right)=\frac{{bx}}{{a}\left({a}+\mathrm{60}\right)}\left(−{x}+\mathrm{2}{a}+\mathrm{60}\right) \\ $$$${At}\:{x}={a}+\mathrm{30}, \\ $$$${f}\left({a}+\mathrm{30}\right)=\frac{{b}\left({a}+\mathrm{30}\right)\left(−{a}−\mathrm{30}+\mathrm{2}{a}+\mathrm{60}\right)}{{a}\left({a}+\mathrm{60}\right)} \\ $$$${f}\left({a}+\mathrm{30}\right)=\frac{{b}\left({a}+\mathrm{30}\right)^{\mathrm{2}} }{{a}\left({a}+\mathrm{60}\right)} \\ $$$${f}\left({a}+\mathrm{30}\right)−{b}=\frac{\mathrm{900}{b}}{{a}\left({a}+\mathrm{60}\right)} \\ $$$${But}\:{f}\left({a}+\mathrm{30}\right)−{f}\left({a}\right)=−\mathrm{3}. \\ $$$$\Rightarrow\mathrm{300}{b}=−{a}\left({a}+\mathrm{60}\right) \\ $$$${b}=\frac{−{a}\left({a}+\mathrm{60}\right)}{\mathrm{300}}. \\ $$$$\therefore\:{f}\left({x}\right)=\frac{−{a}\left({a}+\mathrm{60}\right)}{\mathrm{300}}×\frac{{x}}{{a}\left({a}+\mathrm{60}\right)}\left(−{x}+\mathrm{2}{a}+\mathrm{60}\right) \\ $$$${f}\left({x}\right)=\frac{{x}\left({x}−\mathrm{2}{a}−\mathrm{60}\right)}{\mathrm{300}}=\frac{\mathrm{1}}{\mathrm{300}}{x}^{\mathrm{2}} −\frac{{x}\left({a}+\mathrm{30}\right)}{\mathrm{150}} \\ $$$${f}\left({a}\right)=\frac{{a}\left({a}−\mathrm{2}{a}−\mathrm{60}\right)}{\mathrm{300}}=\frac{−{a}\left({a}+\mathrm{60}\right)}{\mathrm{300}} \\ $$$${f}\left({a}+\mathrm{60}\right)=\frac{\left({a}+\mathrm{60}\right)\left(−{a}\right)}{\mathrm{300}}={b} \\ $$$${f}'\left({x}\right)=\frac{{x}−{a}−\mathrm{30}}{\mathrm{150}}\Rightarrow{at}\:{midpoint},\:{f}'\left({x}\right)=\mathrm{0} \\ $$$${or}\:{x}={a}+\mathrm{30}. \\ $$$${We}\:{may}\:{choose}\:{to}\:{shift}\:{this}\:{curve} \\ $$$${by}\:{an}\:{amount}\:{h}\:{vertically}\:{so}\:{that}\:{in} \\ $$$${general} \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{300}}{x}^{\mathrm{2}} −\frac{{x}\left({a}+\mathrm{30}\right)}{\mathrm{150}}+{h}\:\:\left({a}\leqslant{x}\leqslant{a}+\mathrm{60},\:{a},{h}\in\mathbb{R}\right). \\ $$$${a}=\mathrm{0}\:{and}\:{h}=\mathrm{0}\Rightarrow{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{300}}{x}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{5}}{x}\:{as}\:{was}\:{found}. \\ $$

Commented by sanusihammed last updated on 17/Jun/16

Thanks so much

$${Thanks}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com