Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 61724 by aliesam last updated on 07/Jun/19

Σ_(n≥0) n^2 x^n

$$\underset{{n}\geqslant\mathrm{0}} {\sum}{n}^{\mathrm{2}} {x}^{{n}} \\ $$$$ \\ $$

Commented by maxmathsup by imad last updated on 07/Jun/19

let p(x) =Σ_(n=0) ^∞  x^n    (∣x∣<1) ⇒p(x) =(1/(1−x)) ⇒p^′ (x) =(1/((1−x)^2 )) ⇒  Σ_(n=1) ^∞  nx^(n−1)  =(1/((1−x)^2 )) ⇒Σ_(n=1) ^∞  nx^n  =(x/((x−1)^2 )) ⇒  Σ_(n=1) ^∞  n^2 x^(n−1)  ={ (x/((x−1)^2 ))}^((1))  =(((x−1)^2 −x(2(x−1)))/((x−1)^4 )) =((x^2 −2x+1−2x^2  +2x)/((x−1)^4 ))  =((1−x^2 )/((1−x)^4 )) =(((1−x)(1+x))/((1−x)^4 )) =((x+1)/((1−x)^3 )) ⇒Σ_(n=1) ^∞  n^2  x^n  =((x^2  +x)/((1−x)^3 )) ⇒  Σ_(n≥0)  n^2 x^n   = ((x^2 +x)/((1−x)^3 )) .

$${let}\:{p}\left({x}\right)\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} \:\:\:\left(\mid{x}\mid<\mathrm{1}\right)\:\Rightarrow{p}\left({x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}−{x}}\:\Rightarrow{p}^{'} \left({x}\right)\:=\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:{nx}^{{n}−\mathrm{1}} \:=\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\:\Rightarrow\sum_{{n}=\mathrm{1}} ^{\infty} \:{nx}^{{n}} \:=\frac{{x}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:{n}^{\mathrm{2}} {x}^{{n}−\mathrm{1}} \:=\left\{\:\frac{{x}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \:=\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} −{x}\left(\mathrm{2}\left({x}−\mathrm{1}\right)\right)}{\left({x}−\mathrm{1}\right)^{\mathrm{4}} }\:=\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{2}{x}}{\left({x}−\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$=\frac{\mathrm{1}−{x}^{\mathrm{2}} }{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }\:=\frac{\left(\mathrm{1}−{x}\right)\left(\mathrm{1}+{x}\right)}{\left(\mathrm{1}−{x}\right)^{\mathrm{4}} }\:=\frac{{x}+\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }\:\Rightarrow\sum_{{n}=\mathrm{1}} ^{\infty} \:{n}^{\mathrm{2}} \:{x}^{{n}} \:=\frac{{x}^{\mathrm{2}} \:+{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }\:\Rightarrow \\ $$$$\sum_{{n}\geqslant\mathrm{0}} \:{n}^{\mathrm{2}} {x}^{{n}} \:\:=\:\frac{{x}^{\mathrm{2}} +{x}}{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }\:. \\ $$

Commented by maxmathsup by imad last updated on 07/Jun/19

sir  aliissam where are you from....

$${sir}\:\:{aliissam}\:{where}\:{are}\:{you}\:{from}.... \\ $$

Commented by aliesam last updated on 07/Jun/19

iraq sir

$${iraq}\:{sir}\: \\ $$

Commented by aliesam last updated on 07/Jun/19

but why

$${but}\:{why}\: \\ $$

Commented by maxmathsup by imad last updated on 07/Jun/19

for nothing its only a information sir ...hou are always welcome...

$${for}\:{nothing}\:{its}\:{only}\:{a}\:{information}\:{sir}\:...{hou}\:{are}\:{always}\:{welcome}... \\ $$

Commented by aliesam last updated on 07/Jun/19

ok sir and thank you about the graet sol

$${ok}\:{sir}\:{and}\:{thank}\:{you}\:{about}\:{the}\:{graet}\:{sol} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com