Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 61755 by arcana last updated on 08/Jun/19

if f(z)=Σ_(k=1) ^n a_k z^k ,a_k ,z∈C.Prove    a_k =(1/(2πi))∫_(∣z∣=r ) ((f(z))/z^(k+1) )dz

$$\mathrm{if}\:{f}\left({z}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{a}_{{k}} {z}^{{k}} ,{a}_{{k}} ,{z}\in\mathbb{C}.\mathrm{Prove} \\ $$$$ \\ $$$${a}_{{k}} =\frac{\mathrm{1}}{\mathrm{2}\pi{i}}\underset{\mid{z}\mid={r}\:} {\int}\frac{{f}\left({z}\right)}{{z}^{{k}+\mathrm{1}} }{dz} \\ $$$$ \\ $$

Commented by arcana last updated on 08/Jun/19

use ∫_(∣z∣=r) (1/z^n )dz=2πi iff n=1,∫_(∣z∣=r) (1/z^n )dz=0 if n≠1

$$\mathrm{use}\:\underset{\mid{z}\mid={r}} {\int}\frac{\mathrm{1}}{{z}^{{n}} }{dz}=\mathrm{2}\pi{i}\:\mathrm{iff}\:{n}=\mathrm{1},\underset{\mid{z}\mid={r}} {\int}\frac{\mathrm{1}}{{z}^{{n}} }{dz}=\mathrm{0}\:\mathrm{if}\:{n}\neq\mathrm{1} \\ $$

Commented by arcana last updated on 09/Jun/19

Cauchy theorem  ((k!)/(2πi))∫_C_R  ((f(z))/z^(k+1) )dz=f^( (k)) (0)?

$${Cauchy}\:{theorem} \\ $$$$\frac{{k}!}{\mathrm{2}\pi{i}}\underset{{C}_{{R}} } {\int}\frac{{f}\left({z}\right)}{{z}^{{k}+\mathrm{1}} }{dz}={f}^{\:\left({k}\right)} \left(\mathrm{0}\right)? \\ $$

Answered by perlman last updated on 09/Jun/19

cauchy theorem∫_(cr) ((f(z))/z^(k+1) )=(1/((k)!))f^((k)) (0)=(1/(k!))(d^k x/dx^k )Σ_(k=1) (a_k z^k )=(1/(k!))Σ_(j≥k) a_k d^k x^j =(1/(k!))Σ_(j≥k) a_j j(j−1)......(j−k+1)x^(j−k) ∣_(x=0)   =(1/(k!))a_k k(k−1).....1+(1/(k!))Σ_(j>k) a_j j(j−1)....(j−k+1)x^(j−k) ∣_(x=0) =a_k ((k!)/(k!))+0  =a_k

$${cauchy}\:{theorem}\int_{{cr}} \frac{{f}\left({z}\right)}{{z}^{{k}+\mathrm{1}} }=\frac{\mathrm{1}}{\left({k}\right)!}{f}^{\left({k}\right)} \left(\mathrm{0}\right)=\frac{\mathrm{1}}{{k}!}\frac{{d}^{{k}} {x}}{{dx}^{{k}} }\underset{{k}=\mathrm{1}} {\sum}\left({a}_{{k}} {z}^{{k}} \right)=\frac{\mathrm{1}}{{k}!}\underset{{j}\geqslant{k}} {\sum}{a}_{{k}} {d}^{{k}} {x}^{{j}} =\frac{\mathrm{1}}{{k}!}\sum_{{j}\geqslant{k}} {a}_{{j}} {j}\left({j}−\mathrm{1}\right)......\left({j}−{k}+\mathrm{1}\right){x}^{{j}−{k}} \mid_{{x}=\mathrm{0}} \\ $$$$=\frac{\mathrm{1}}{{k}!}{a}_{{k}} {k}\left({k}−\mathrm{1}\right).....\mathrm{1}+\frac{\mathrm{1}}{{k}!}\underset{{j}>{k}} {\sum}{a}_{{j}} {j}\left({j}−\mathrm{1}\right)....\left({j}−{k}+\mathrm{1}\right){x}^{{j}−{k}} \mid_{{x}=\mathrm{0}} ={a}_{{k}} \frac{{k}!}{{k}!}+\mathrm{0} \\ $$$$={a}_{{k}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com