Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 6180 by FilupSmith last updated on 17/Jun/16

((df(x))/dx)=f(x)+x  Solve f(x)

$$\frac{{df}\left({x}\right)}{{dx}}={f}\left({x}\right)+{x} \\ $$$$\mathrm{Solve}\:{f}\left({x}\right) \\ $$

Commented by 123456 last updated on 17/Jun/16

(df/dx)−f=x  f=f_n +f_g   (df_n /dx)−f_n =0⇒f_n =Ae^x   (df_g /dx)−f_g =x  f_g =ax+b  (df_g /dx)=a  a−(ax+b)=x  −ax+(a−b)=x  (−1−a)x+(a−b)=0  −1−a=0⇒a=−1  a−b=0⇒b=a=−1  f_g =−x−1  f=Ae^x −x−1

$$\frac{{df}}{{dx}}−{f}={x} \\ $$$${f}={f}_{{n}} +{f}_{{g}} \\ $$$$\frac{{df}_{{n}} }{{dx}}−{f}_{{n}} =\mathrm{0}\Rightarrow{f}_{{n}} ={Ae}^{{x}} \\ $$$$\frac{{df}_{{g}} }{{dx}}−{f}_{{g}} ={x} \\ $$$${f}_{{g}} ={ax}+{b} \\ $$$$\frac{{df}_{{g}} }{{dx}}={a} \\ $$$${a}−\left({ax}+{b}\right)={x} \\ $$$$−{ax}+\left({a}−{b}\right)={x} \\ $$$$\left(−\mathrm{1}−{a}\right){x}+\left({a}−{b}\right)=\mathrm{0} \\ $$$$−\mathrm{1}−{a}=\mathrm{0}\Rightarrow{a}=−\mathrm{1} \\ $$$${a}−{b}=\mathrm{0}\Rightarrow{b}={a}=−\mathrm{1} \\ $$$${f}_{{g}} =−{x}−\mathrm{1} \\ $$$${f}={Ae}^{{x}} −{x}−\mathrm{1} \\ $$

Commented by Rasheed Soomro last updated on 19/Jun/16

Didn′t understand  f=f_n +f_g   (Supposition?)  (df_n /dx)−f_n =0   ,  (df_g /dx)−f_g =x(How? Why?)  Why one is equal to 0 and other equal to x?

$${Didn}'{t}\:{understand} \\ $$$${f}={f}_{{n}} +{f}_{{g}} \:\:\left({Supposition}?\right) \\ $$$$\frac{{df}_{{n}} }{{dx}}−{f}_{{n}} =\mathrm{0}\:\:\:,\:\:\frac{{df}_{{g}} }{{dx}}−{f}_{{g}} ={x}\left({How}?\:{Why}?\right) \\ $$$${Why}\:{one}\:{is}\:{equal}\:{to}\:\mathrm{0}\:{and}\:{other}\:{equal}\:{to}\:{x}? \\ $$

Commented by prakash jain last updated on 20/Jun/16

y′−y=x  Let us say y=f_1  is a solution such that  f_1 ′−f_1 =x  Also assume f_2  is a solution such that  f_2 ′−f_2 =0  Now for general solution of y  y=f_1 +kf_2   y′=f_1 ′+kf_2 ′  y′−y=f_1 ′+kf_2 ′−f_1 −f_2   =f_1 ′−f_1 +k(f_2 ′−f_2 )=x+k∙0=x  So general solution has 2 parts  homogenous solution (f_2 )  particular solution (f_1 )  any multiple of homegenous solution can  be added to particular solution and the sum  will still satisfy differential equation.

$${y}'−{y}={x} \\ $$$$\mathrm{Let}\:\mathrm{us}\:\mathrm{say}\:{y}={f}_{\mathrm{1}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{such}\:\mathrm{that} \\ $$$${f}_{\mathrm{1}} '−{f}_{\mathrm{1}} ={x} \\ $$$$\mathrm{Also}\:\mathrm{assume}\:{f}_{\mathrm{2}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{such}\:\mathrm{that} \\ $$$${f}_{\mathrm{2}} '−{f}_{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{Now}\:\mathrm{for}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:{y} \\ $$$${y}={f}_{\mathrm{1}} +{kf}_{\mathrm{2}} \\ $$$${y}'={f}_{\mathrm{1}} '+{kf}_{\mathrm{2}} ' \\ $$$${y}'−{y}={f}_{\mathrm{1}} '+{kf}_{\mathrm{2}} '−{f}_{\mathrm{1}} −{f}_{\mathrm{2}} \\ $$$$={f}_{\mathrm{1}} '−{f}_{\mathrm{1}} +{k}\left({f}_{\mathrm{2}} '−{f}_{\mathrm{2}} \right)={x}+{k}\centerdot\mathrm{0}={x} \\ $$$$\mathrm{So}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{has}\:\mathrm{2}\:\mathrm{parts} \\ $$$$\mathrm{homogenous}\:\mathrm{solution}\:\left({f}_{\mathrm{2}} \right) \\ $$$$\mathrm{particular}\:\mathrm{solution}\:\left({f}_{\mathrm{1}} \right) \\ $$$${any}\:{multiple}\:{of}\:{homegenous}\:{solution}\:{can} \\ $$$${be}\:{added}\:{to}\:{particular}\:{solution}\:{and}\:{the}\:{sum} \\ $$$${will}\:{still}\:{satisfy}\:{differential}\:{equation}. \\ $$

Commented by Rasheed Soomro last updated on 21/Jun/16

THANX!

$$\mathbb{TH}\mathcal{AN}\mathbb{X}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com