Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 61809 by aliesam last updated on 09/Jun/19

Commented by maxmathsup by imad last updated on 10/Jun/19

let A =∫_0 ^1    (x^n /(√(ln(x)))) dx ⇒ A = ∫_0 ^1  (x^n /(√(−(−lnx)))) dx =(1/(√(−1))) ∫_0 ^1   (x^n /(√(−ln(x)))) dx  changement  (√(−ln(x)))=t give −ln(x) =t^2  ⇒ln(x) =−t^2  ⇒x =e^(−t^2 )  ⇒  A = (1/i) ∫_(+∞) ^0    (e^(−nt^2 ) /t) (−2t)e^(−t^2 ) dt = (2/i) ∫_0 ^∞    e^(−(n+1)t^2 ) dt =−2i ∫_0 ^∞  e^(−(n+1)t^2 ) dt  =_((√(n+1))t =u)    −2i ∫_0 ^∞   e^(−u^2 ) (du/(√(n+1))) =((−2i)/(√(n+1))) ∫_0 ^∞   e^(−u^2 ) du =((−2i)/(√(n+1)))((√π)/2) ⇒  A =((−i(√π))/(√(n+1))) .

$${let}\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{x}^{{n}} }{\sqrt{{ln}\left({x}\right)}}\:{dx}\:\Rightarrow\:{A}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}} }{\sqrt{−\left(−{lnx}\right)}}\:{dx}\:=\frac{\mathrm{1}}{\sqrt{−\mathrm{1}}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{x}^{{n}} }{\sqrt{−{ln}\left({x}\right)}}\:{dx} \\ $$$${changement}\:\:\sqrt{−{ln}\left({x}\right)}={t}\:{give}\:−{ln}\left({x}\right)\:={t}^{\mathrm{2}} \:\Rightarrow{ln}\left({x}\right)\:=−{t}^{\mathrm{2}} \:\Rightarrow{x}\:={e}^{−{t}^{\mathrm{2}} } \:\Rightarrow \\ $$$${A}\:=\:\frac{\mathrm{1}}{{i}}\:\int_{+\infty} ^{\mathrm{0}} \:\:\:\frac{{e}^{−{nt}^{\mathrm{2}} } }{{t}}\:\left(−\mathrm{2}{t}\right){e}^{−{t}^{\mathrm{2}} } {dt}\:=\:\frac{\mathrm{2}}{{i}}\:\int_{\mathrm{0}} ^{\infty} \:\:\:{e}^{−\left({n}+\mathrm{1}\right){t}^{\mathrm{2}} } {dt}\:=−\mathrm{2}{i}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−\left({n}+\mathrm{1}\right){t}^{\mathrm{2}} } {dt} \\ $$$$=_{\sqrt{{n}+\mathrm{1}}{t}\:={u}} \:\:\:−\mathrm{2}{i}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{u}^{\mathrm{2}} } \frac{{du}}{\sqrt{{n}+\mathrm{1}}}\:=\frac{−\mathrm{2}{i}}{\sqrt{{n}+\mathrm{1}}}\:\int_{\mathrm{0}} ^{\infty} \:\:{e}^{−{u}^{\mathrm{2}} } {du}\:=\frac{−\mathrm{2}{i}}{\sqrt{{n}+\mathrm{1}}}\frac{\sqrt{\pi}}{\mathrm{2}}\:\Rightarrow \\ $$$${A}\:=\frac{−{i}\sqrt{\pi}}{\sqrt{{n}+\mathrm{1}}}\:. \\ $$

Answered by perlman last updated on 09/Jun/19

(√(ln(x)))=i(√(−ln(x)))  ∀x∈]0;1]  withe (√(−ln(x)))=y  x=e^(−y^2 )   =∫_(+∞) ^0 (e^(−ny^2 ) /(iy))(−2y)e^(−y^2 ) dy  =i∫_0 ^(+∞) e^(−(n+1)y^2 ) dy  let z=(√((n+1)))y  dz=(√(n+1))dy  =i∫_0 ^(+∞) (√(n+1))e^(−z^2 ) dz=i(√(n+1))∫_0 ^(+∞) e^(−z^2 ) dz=i(√(n+1))((√π)/2)

$$\left.\sqrt{{ln}\left({x}\right)}\left.={i}\sqrt{−{ln}\left({x}\right)}\:\:\forall{x}\in\right]\mathrm{0};\mathrm{1}\right] \\ $$$${withe}\:\sqrt{−{ln}\left({x}\right)}={y} \\ $$$${x}={e}^{−{y}^{\mathrm{2}} } \\ $$$$=\int_{+\infty} ^{\mathrm{0}} \frac{{e}^{−{ny}^{\mathrm{2}} } }{{iy}}\left(−\mathrm{2}{y}\right){e}^{−{y}^{\mathrm{2}} } {dy} \\ $$$$={i}\int_{\mathrm{0}} ^{+\infty} {e}^{−\left({n}+\mathrm{1}\right){y}^{\mathrm{2}} } {dy} \\ $$$${let}\:{z}=\sqrt{\left({n}+\mathrm{1}\right)}{y} \\ $$$${dz}=\sqrt{{n}+\mathrm{1}}{dy} \\ $$$$={i}\int_{\mathrm{0}} ^{+\infty} \sqrt{{n}+\mathrm{1}}{e}^{−\boldsymbol{{z}}^{\mathrm{2}} } \boldsymbol{{dz}}=\boldsymbol{{i}}\sqrt{\boldsymbol{{n}}+\mathrm{1}}\int_{\mathrm{0}} ^{+\infty} {e}^{−{z}^{\mathrm{2}} } {dz}={i}\sqrt{{n}+\mathrm{1}}\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com