Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 61834 by aliesam last updated on 09/Jun/19

Commented by maxmathsup by imad last updated on 09/Jun/19

let A_n = {(1/p) Σ_(k=1) ^p  (1+(k/p))^(1/n) }^n  ⇒ln(A_n ) =n ln((1/p)Σ_(k=1) ^p  (1+(k/p))^(1/n) ) we have  lim_(p→+∞)   (1/p)Σ_(k=1) ^p (1+(k/p))^(1/n)     =∫_0 ^1   (1+x)^(1/n) dx  =[(1/(1+(1/n)))(1+x)^((1/n)+1) ]_0 ^1   =(n/(n+1)) {2^((n+1)/n) −1} ⇒ln(A_n ) = n ln{(n/(n+1))( 2^(1+(1/n))  −1)}   we have  2^(1+(1/n)) −1 =2 e^((ln(2))/n) −1 ∼2{ 1 +((ln(2))/n)} −1  =1+(2/n)ln(2)⇒  (n/(n+1))(2^(1+(1/n)) −1) ∼(n/(n+1))(1+(2/n)ln(2)) =(n/(n+1)) +(2/(n+1))ln(2) ⇒  nln{(n/(n+1))(2^(1+(1/n)) −1)} ∼ nln((n/(n+1)) +(2/(n+1))ln(2)) but  nln((n/(n+1)) +((2ln(2))/(n+1))) =n ln(1−(1/(n+1)) +((2ln(2))/(n+1))) ∼n(−(1/(n+1)) +((2ln(2))/(n+1)))  =(n/(n+1)){−1+2ln(2)}→2ln(2)−1  ⇒ lim_(n→+∞)  A_n =e^(2ln(2)−1)  =(4/e)  ⇒ lim_(n→+∞)   X_n =(4/e) .

$${let}\:{A}_{{n}} =\:\left\{\frac{\mathrm{1}}{{p}}\:\sum_{{k}=\mathrm{1}} ^{{p}} \:\left(\mathrm{1}+\frac{{k}}{{p}}\right)^{\frac{\mathrm{1}}{{n}}} \right\}^{{n}} \:\Rightarrow{ln}\left({A}_{{n}} \right)\:={n}\:{ln}\left(\frac{\mathrm{1}}{{p}}\sum_{{k}=\mathrm{1}} ^{{p}} \:\left(\mathrm{1}+\frac{{k}}{{p}}\right)^{\frac{\mathrm{1}}{{n}}} \right)\:{we}\:{have} \\ $$$${lim}_{{p}\rightarrow+\infty} \:\:\frac{\mathrm{1}}{{p}}\sum_{{k}=\mathrm{1}} ^{{p}} \left(\mathrm{1}+\frac{{k}}{{p}}\right)^{\frac{\mathrm{1}}{{n}}} \:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{n}}} {dx}\:\:=\left[\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{n}}}\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{n}}+\mathrm{1}} \right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{{n}}{{n}+\mathrm{1}}\:\left\{\mathrm{2}^{\frac{{n}+\mathrm{1}}{{n}}} −\mathrm{1}\right\}\:\Rightarrow{ln}\left({A}_{{n}} \right)\:=\:{n}\:{ln}\left\{\frac{{n}}{{n}+\mathrm{1}}\left(\:\mathrm{2}^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} \:−\mathrm{1}\right)\right\}\:\:\:{we}\:{have} \\ $$$$\mathrm{2}^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} −\mathrm{1}\:=\mathrm{2}\:{e}^{\frac{{ln}\left(\mathrm{2}\right)}{{n}}} −\mathrm{1}\:\sim\mathrm{2}\left\{\:\mathrm{1}\:+\frac{{ln}\left(\mathrm{2}\right)}{{n}}\right\}\:−\mathrm{1}\:\:=\mathrm{1}+\frac{\mathrm{2}}{{n}}{ln}\left(\mathrm{2}\right)\Rightarrow \\ $$$$\frac{{n}}{{n}+\mathrm{1}}\left(\mathrm{2}^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} −\mathrm{1}\right)\:\sim\frac{{n}}{{n}+\mathrm{1}}\left(\mathrm{1}+\frac{\mathrm{2}}{{n}}{ln}\left(\mathrm{2}\right)\right)\:=\frac{{n}}{{n}+\mathrm{1}}\:+\frac{\mathrm{2}}{{n}+\mathrm{1}}{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$${nln}\left\{\frac{{n}}{{n}+\mathrm{1}}\left(\mathrm{2}^{\mathrm{1}+\frac{\mathrm{1}}{{n}}} −\mathrm{1}\right)\right\}\:\sim\:{nln}\left(\frac{{n}}{{n}+\mathrm{1}}\:+\frac{\mathrm{2}}{{n}+\mathrm{1}}{ln}\left(\mathrm{2}\right)\right)\:{but} \\ $$$${nln}\left(\frac{{n}}{{n}+\mathrm{1}}\:+\frac{\mathrm{2}{ln}\left(\mathrm{2}\right)}{{n}+\mathrm{1}}\right)\:={n}\:{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\:+\frac{\mathrm{2}{ln}\left(\mathrm{2}\right)}{{n}+\mathrm{1}}\right)\:\sim{n}\left(−\frac{\mathrm{1}}{{n}+\mathrm{1}}\:+\frac{\mathrm{2}{ln}\left(\mathrm{2}\right)}{{n}+\mathrm{1}}\right) \\ $$$$=\frac{{n}}{{n}+\mathrm{1}}\left\{−\mathrm{1}+\mathrm{2}{ln}\left(\mathrm{2}\right)\right\}\rightarrow\mathrm{2}{ln}\left(\mathrm{2}\right)−\mathrm{1}\:\:\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} ={e}^{\mathrm{2}{ln}\left(\mathrm{2}\right)−\mathrm{1}} \:=\frac{\mathrm{4}}{{e}} \\ $$$$\Rightarrow\:{lim}_{{n}\rightarrow+\infty} \:\:{X}_{{n}} =\frac{\mathrm{4}}{{e}}\:. \\ $$

Commented by aliesam last updated on 09/Jun/19

brilliant sol thank you sir you are graet

$${brilliant}\:{sol}\:{thank}\:{you}\:{sir}\:{you}\:{are}\:{graet} \\ $$

Commented by maxmathsup by imad last updated on 09/Jun/19

you are welcome sir issam.

$${you}\:{are}\:{welcome}\:{sir}\:{issam}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com