Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 61850 by mr W last updated on 10/Jun/19

Find all integer solution(s):                615+x^2 =2^y

$${Find}\:{all}\:{integer}\:{solution}\left({s}\right): \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{615}+\boldsymbol{{x}}^{\mathrm{2}} =\mathrm{2}^{\boldsymbol{{y}}} \\ $$

Commented by Rasheed.Sindhi last updated on 10/Jun/19

One solution:  x=59 , y=12

$${One}\:{solution}:\:\:{x}=\mathrm{59}\:,\:{y}=\mathrm{12} \\ $$

Commented by Rasheed.Sindhi last updated on 11/Jun/19

^• 615+x^2 =2^y   ⇒2^y ≥615  ⇒2^y ≥1024  ⇒y≥10  ^• 615+x^2 ∈E  ⇒x^2 ∈O  ⇒x∈O  ^• x^2 =2^y −615  ⇒ 2^y −615 is perfect square.  2^(10) −615 not perfect square  2^(11) −615 not perfect square  2^(12) −615=(59)^2  perfect square  ∴ x=59,y=12    ^• 2^y −x^2 =615=3×5×41  ⇒ { (( 2^y ≡x^2 (mod 3))),(( 2^y ≡x^2 (mod 5))),(( 2^y ≡x^2 (mod 41))) :}  This suggests that 2^y −x^2  has  5 as unit digit and sum of decimal  digits is divisible by 3 and it is also  divisible by 41.  The first point specialy helps           ∙....∙  ∙......∙

$$\:^{\bullet} \mathrm{615}+\boldsymbol{{x}}^{\mathrm{2}} =\mathrm{2}^{\boldsymbol{{y}}} \\ $$$$\Rightarrow\mathrm{2}^{{y}} \geqslant\mathrm{615} \\ $$$$\Rightarrow\mathrm{2}^{{y}} \geqslant\mathrm{1024} \\ $$$$\Rightarrow{y}\geqslant\mathrm{10} \\ $$$$\:^{\bullet} \mathrm{615}+\boldsymbol{{x}}^{\mathrm{2}} \in\mathbb{E} \\ $$$$\Rightarrow{x}^{\mathrm{2}} \in\mathbb{O} \\ $$$$\Rightarrow{x}\in\mathbb{O} \\ $$$$\:^{\bullet} {x}^{\mathrm{2}} =\mathrm{2}^{{y}} −\mathrm{615} \\ $$$$\Rightarrow\:\mathrm{2}^{{y}} −\mathrm{615}\:\mathrm{is}\:\mathrm{perfect}\:\mathrm{square}. \\ $$$$\mathrm{2}^{\mathrm{10}} −\mathrm{615}\:\mathrm{not}\:\mathrm{perfect}\:\mathrm{square} \\ $$$$\mathrm{2}^{\mathrm{11}} −\mathrm{615}\:\mathrm{not}\:\mathrm{perfect}\:\mathrm{square} \\ $$$$\mathrm{2}^{\mathrm{12}} −\mathrm{615}=\left(\mathrm{59}\right)^{\mathrm{2}} \:\mathrm{perfect}\:\mathrm{square} \\ $$$$\therefore\:{x}=\mathrm{59},{y}=\mathrm{12} \\ $$$$ \\ $$$$\:^{\bullet} \mathrm{2}^{{y}} −{x}^{\mathrm{2}} =\mathrm{615}=\mathrm{3}×\mathrm{5}×\mathrm{41} \\ $$$$\Rightarrow\begin{cases}{\:\mathrm{2}^{{y}} \equiv{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{3}\right)}\\{\:\mathrm{2}^{{y}} \equiv{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{5}\right)}\\{\:\mathrm{2}^{{y}} \equiv{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{41}\right)}\end{cases} \\ $$$$\mathrm{This}\:\mathrm{suggests}\:\mathrm{that}\:\mathrm{2}^{{y}} −{x}^{\mathrm{2}} \:\mathrm{has} \\ $$$$\mathrm{5}\:\mathrm{as}\:\mathrm{unit}\:\mathrm{digit}\:\mathrm{and}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{decimal} \\ $$$$\mathrm{digits}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{3}\:\mathrm{and}\:\mathrm{it}\:\mathrm{is}\:\mathrm{also} \\ $$$$\mathrm{divisible}\:\mathrm{by}\:\mathrm{41}. \\ $$$${The}\:{first}\:{point}\:{specialy}\:{helps} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\centerdot....\centerdot \\ $$$$\centerdot......\centerdot \\ $$

Commented by mr W last updated on 10/Jun/19

thank you sir! nice working! can we  be sure if other solutions exist?

$${thank}\:{you}\:{sir}!\:{nice}\:{working}!\:{can}\:{we} \\ $$$${be}\:{sure}\:{if}\:{other}\:{solutions}\:{exist}? \\ $$

Commented by Rasheed.Sindhi last updated on 11/Jun/19

Sir, it′s beyond my capacity.  A computer program can help  in searching.A program that  calculates 2^y −615 for defferent (y,x)  systematically and checks for every  situation whether it′s perfect square  or not.

$$\mathrm{Sir},\:\mathrm{it}'\mathrm{s}\:\mathrm{beyond}\:\mathrm{my}\:\mathrm{capacity}. \\ $$$$\mathrm{A}\:\mathrm{computer}\:\mathrm{program}\:\mathrm{can}\:\mathrm{help} \\ $$$$\mathrm{in}\:\mathrm{searching}.\mathrm{A}\:\mathrm{program}\:\mathrm{that} \\ $$$$\mathrm{calculates}\:\mathrm{2}^{{y}} −\mathrm{615}\:\mathrm{for}\:\mathrm{defferent}\:\left({y},{x}\right) \\ $$$$\mathrm{systematically}\:\mathrm{and}\:\mathrm{checks}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{situation}\:\mathrm{whether}\:\mathrm{it}'\mathrm{s}\:\mathrm{perfect}\:\mathrm{square} \\ $$$$\mathrm{or}\:\mathrm{not}. \\ $$

Commented by Rasheed.Sindhi last updated on 12/Jun/19

By the way sir, what is the source  of this problem?

$$\mathrm{By}\:\mathrm{the}\:\mathrm{way}\:\mathrm{sir},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{source} \\ $$$$\mathrm{of}\:\mathrm{this}\:\mathrm{problem}? \\ $$

Commented by mr W last updated on 12/Jun/19

I saw this question in youtube channel  “mind your decision”. but i havn′t  watched the answer yet and want to try  by myself at first.

$${I}\:{saw}\:{this}\:{question}\:{in}\:{youtube}\:{channel} \\ $$$$``{mind}\:{your}\:{decision}''.\:{but}\:{i}\:{havn}'{t} \\ $$$${watched}\:{the}\:{answer}\:{yet}\:{and}\:{want}\:{to}\:{try} \\ $$$${by}\:{myself}\:{at}\:{first}. \\ $$

Commented by Rasheed.Sindhi last updated on 12/Jun/19

Upto now I′ve discovered only this  that y is even and x is odd!  We can write the equation           2^(2u) −(2k+1)^2 =615  and this is true for u=6, k=29  Sir could the graph be used to show  other solutions(whether they  exist or not)                 •  •  •  •             2^(2u) −4k^2 −4k−1=615             4^u −4k^2 −4k=616            4^(u−1) −k^2 −k=154            k^2 +k−4^(u−1) =−154           ((k(k+1))/2)−(2^(2u−2) /2)=−77           ((k(k+1))/2)−2^(2u−3) =−77           ((k(k+1))/2)+77=2^(2u−3)            ((k(k+1))/2)+77∈E          ((k(k+1))/2)∈O       4∤k ∨ 4∤(k+1)     k is not 4t or 4t−1 type        ∵x=2k+1       ∴ x is not 8t+1 or 8t−1(or8t+7) type      ∵ x∈ O      ∴  x is 8t+3 or 8t−3(or 8t+5) type.               ......        ....

$${Upto}\:{now}\:{I}'{ve}\:{discovered}\:{only}\:{this} \\ $$$${that}\:{y}\:{is}\:{even}\:{and}\:{x}\:{is}\:{odd}! \\ $$$${We}\:{can}\:{write}\:{the}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{2}{u}} −\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{615} \\ $$$${and}\:{this}\:{is}\:{true}\:{for}\:{u}=\mathrm{6},\:\mathrm{k}=\mathrm{29} \\ $$$${Sir}\:{could}\:{the}\:{graph}\:{be}\:{used}\:{to}\:\mathrm{s}{how} \\ $$$${other}\:{solutions}\left({whether}\:{they}\right. \\ $$$$\left.{exist}\:{or}\:{not}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bullet\:\:\bullet\:\:\bullet\:\:\bullet \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{2u}} −\mathrm{4k}^{\mathrm{2}} −\mathrm{4k}−\mathrm{1}=\mathrm{615} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}^{\mathrm{u}} −\mathrm{4k}^{\mathrm{2}} −\mathrm{4k}=\mathrm{616} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{4}^{\mathrm{u}−\mathrm{1}} −\mathrm{k}^{\mathrm{2}} −\mathrm{k}=\mathrm{154} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{k}^{\mathrm{2}} +\mathrm{k}−\mathrm{4}^{\mathrm{u}−\mathrm{1}} =−\mathrm{154} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)}{\mathrm{2}}−\frac{\mathrm{2}^{\mathrm{2u}−\mathrm{2}} }{\mathrm{2}}=−\mathrm{77} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)}{\mathrm{2}}−\mathrm{2}^{\mathrm{2u}−\mathrm{3}} =−\mathrm{77} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)}{\mathrm{2}}+\mathrm{77}=\mathrm{2}^{\mathrm{2u}−\mathrm{3}} \\ $$$$\:\:\:\:\:\:\:\:\:\frac{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)}{\mathrm{2}}+\mathrm{77}\in\mathbb{E} \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{k}\left(\mathrm{k}+\mathrm{1}\right)}{\mathrm{2}}\in\mathbb{O} \\ $$$$\:\:\:\:\:\mathrm{4}\nmid\mathrm{k}\:\vee\:\mathrm{4}\nmid\left(\mathrm{k}+\mathrm{1}\right) \\ $$$$\:\:\:\mathrm{k}\:\mathrm{is}\:\mathrm{not}\:\mathrm{4t}\:\mathrm{or}\:\mathrm{4t}−\mathrm{1}\:\mathrm{type} \\ $$$$\:\:\:\:\:\:\because\mathrm{x}=\mathrm{2k}+\mathrm{1} \\ $$$$\:\:\:\:\:\therefore\:\mathrm{x}\:\mathrm{is}\:\mathrm{not}\:\mathrm{8t}+\mathrm{1}\:\mathrm{or}\:\mathrm{8t}−\mathrm{1}\left(\mathrm{or8t}+\mathrm{7}\right)\:\mathrm{type} \\ $$$$\:\:\:\:\because\:\mathrm{x}\in\:\mathbb{O} \\ $$$$\:\:\:\:\therefore\:\:\mathrm{x}\:\mathrm{is}\:\mathrm{8t}+\mathrm{3}\:\mathrm{or}\:\mathrm{8t}−\mathrm{3}\left(\mathrm{or}\:\mathrm{8t}+\mathrm{5}\right)\:\mathrm{type}. \\ $$$$\:\:\:\:\:\:\: \\ $$$$\:\:\:\:...... \\ $$$$\:\:\:\:\:\:.... \\ $$

Commented by mr W last updated on 12/Jun/19

thank you sir.  any method can be used.  i′ll try to follow your steps and see if  i can go further.

$${thank}\:{you}\:{sir}. \\ $$$${any}\:{method}\:{can}\:{be}\:{used}. \\ $$$${i}'{ll}\:{try}\:{to}\:{follow}\:{your}\:{steps}\:{and}\:{see}\:{if} \\ $$$${i}\:{can}\:{go}\:{further}. \\ $$

Answered by Rasheed.Sindhi last updated on 13/Jun/19

^(•1)   615+x^2 =2^y         ⇒2^y ≥615⇒2^y ≥1024⇒y≥10  ^(•2)  615+x^2 ∈E        ⇒x^2 ∈O⇒x∈O  ^(•3)   2^y −615=x^2         ⇒2^y −615 is perfect square.  ^(•4)  2^y −x^2 =615=3×5×41  ⇒ { ((2^y ≡x^2 (mod 3))),((2^y ≡x^2 (mod 5))),((2^y ≡x^2 (mod 41))) :}  ^(•4.1)  2^y ≡x^2 (mod 5)       ⇒2^y (mod 5)=x^2 (mod 5)       2^y (mod 5):   { ((^(        2^y )  ),2^0 ,2^1 ,2^2 ,2^3 ,2^4 ,2^5 ,2^6 ,(...)),(^(2^y (md 5)) ,1,2,4,3,1,2,4,(...)) :}    2^(4t) ≡1(mod 5)................(ia)    2^(4t+1) ≡2(mod 5)............(iia)    2^(4t+2) ≡4(mod 5)............(iiia)    2^(4t+3) ≡3 (mod 5)............(iva)  (Where  t∈W)         x^2 (mod 5):     (x∈O)   { (^(       x^2 ) ,1^2 ,3^2 ,5^2 ,7^2 ,9^2 ,(11^2 ),(13^2 ),(15^2 ),(...)),(^(x^2  (md 5)) ,1,4,0,4,1,( 1),(  4),(  0),(...)) :}      (10k+1)^2 ≡1(mod 5)      (10k+3)^2 ≡4(mod 5)      (10k+5)^2 ≡0(mod 5)      (10k+7)^2 ≡4(mod 5)      (10k+9)^2 ≡1(mod 5)       2^(4t) ≡1(mod 5)→ { (((10k+1)^2 ≡1(mod 5))),(((10k+9)^2 ≡1(mod 5))) :}     2^(4t+2) ≡4(mod 5)→ { (((10k+3)^2 ≡4(mod 5))),(((10k+7)^2 ≡4(mod 5))) :}      {: (( 2^(4t+1) ≡2(mod 5))),(( 2^(4t+3) ≡3 (mod 5))) } →No x  •  y is either 4t or 4t+2 type     (y∈E)     y→4t type, x→10k+1 or 10k+9 type     y→4t+2 type, x→10k+3 or 10k+7 type     2^(4t) −(10k+1)^(2  ) =615               ∨ 2^(4t) −(10k+9)^2 =615; t≥3 ,k≥0    _(x=1,11,21,31....       or  9,19,29,39,49,59,69,...)^(y=12,16,20,...)     [ y=12 & x=59 satisfy the equation.]     2^(4t+2) −(10k+3)^(2  ) =615               ∨ 2^(4t+2) −(10k+7)^2 =615; t≥2 ,k≥0   _(x=3,13,23,33,....    or  7,17,27,37,...)^(y=10,14,18,22,....)   ......            Continue

$$\:^{\bullet\mathrm{1}} \:\:\mathrm{615}+\mathrm{x}^{\mathrm{2}} =\mathrm{2}^{\mathrm{y}} \\ $$$$\:\:\:\:\:\:\Rightarrow\mathrm{2}^{\mathrm{y}} \geqslant\mathrm{615}\Rightarrow\mathrm{2}^{\mathrm{y}} \geqslant\mathrm{1024}\Rightarrow\mathrm{y}\geqslant\mathrm{10} \\ $$$$\:^{\bullet\mathrm{2}} \:\mathrm{615}+\mathrm{x}^{\mathrm{2}} \in\mathbb{E} \\ $$$$\:\:\:\:\:\:\Rightarrow\mathrm{x}^{\mathrm{2}} \in\mathbb{O}\Rightarrow\mathrm{x}\in\mathbb{O} \\ $$$$\:^{\bullet\mathrm{3}} \:\:\mathrm{2}^{\mathrm{y}} −\mathrm{615}=\mathrm{x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\Rightarrow\mathrm{2}^{\mathrm{y}} −\mathrm{615}\:\mathrm{is}\:{perfect}\:{square}. \\ $$$$\:^{\bullet\mathrm{4}} \:\mathrm{2}^{\mathrm{y}} −\mathrm{x}^{\mathrm{2}} =\mathrm{615}=\mathrm{3}×\mathrm{5}×\mathrm{41} \\ $$$$\Rightarrow\begin{cases}{\mathrm{2}^{\mathrm{y}} \equiv\mathrm{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{3}\right)}\\{\mathrm{2}^{\mathrm{y}} \equiv\mathrm{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{5}\right)}\\{\mathrm{2}^{\mathrm{y}} \equiv\mathrm{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{41}\right)}\end{cases} \\ $$$$\:^{\bullet\mathrm{4}.\mathrm{1}} \:\mathrm{2}^{{y}} \equiv{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\:\:\:\:\:\Rightarrow\mathrm{2}^{\mathrm{y}} \left(\mathrm{mod}\:\mathrm{5}\right)=\mathrm{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\:\:\:\:\:\mathrm{2}^{\mathrm{y}} \left(\mathrm{mod}\:\mathrm{5}\right): \\ $$$$\begin{cases}{\:^{\:\:\:\:\:\:\:\:\mathrm{2}^{\mathrm{y}} } \:}&{\mathrm{2}^{\mathrm{0}} }&{\mathrm{2}^{\mathrm{1}} }&{\mathrm{2}^{\mathrm{2}} }&{\mathrm{2}^{\mathrm{3}} }&{\mathrm{2}^{\mathrm{4}} }&{\mathrm{2}^{\mathrm{5}} }&{\mathrm{2}^{\mathrm{6}} }&{...}\\{\:^{\mathrm{2}^{\mathrm{y}} \left(\mathrm{md}\:\mathrm{5}\right)} }&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}&{\mathrm{3}}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{4}}&{...}\end{cases} \\ $$$$\:\:\mathrm{2}^{\mathrm{4t}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{5}\right)................\left(\mathrm{ia}\right) \\ $$$$\:\:\mathrm{2}^{\mathrm{4t}+\mathrm{1}} \equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right)............\left(\mathrm{iia}\right) \\ $$$$\:\:\mathrm{2}^{\mathrm{4t}+\mathrm{2}} \equiv\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right)............\left(\mathrm{iiia}\right) \\ $$$$\:\:\mathrm{2}^{\mathrm{4t}+\mathrm{3}} \equiv\mathrm{3}\:\left(\mathrm{mod}\:\mathrm{5}\right)............\left(\mathrm{iva}\right) \\ $$$$\left(\mathrm{Where}\:\:\mathrm{t}\in\mathbb{W}\right) \\ $$$$\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{5}\right):\:\:\:\:\:\left(\mathrm{x}\in\mathbb{O}\right) \\ $$$$\begin{cases}{\:^{\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} } }&{\mathrm{1}^{\mathrm{2}} }&{\mathrm{3}^{\mathrm{2}} }&{\mathrm{5}^{\mathrm{2}} }&{\mathrm{7}^{\mathrm{2}} }&{\mathrm{9}^{\mathrm{2}} }&{\mathrm{11}^{\mathrm{2}} }&{\mathrm{13}^{\mathrm{2}} }&{\mathrm{15}^{\mathrm{2}} }&{...}\\{\:^{\mathrm{x}^{\mathrm{2}} \:\left(\mathrm{md}\:\mathrm{5}\right)} }&{\mathrm{1}}&{\mathrm{4}}&{\mathrm{0}}&{\mathrm{4}}&{\mathrm{1}}&{\:\mathrm{1}}&{\:\:\mathrm{4}}&{\:\:\mathrm{0}}&{...}\end{cases} \\ $$$$\:\:\:\:\left(\mathrm{10k}+\mathrm{1}\right)^{\mathrm{2}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\:\:\:\:\left(\mathrm{10k}+\mathrm{3}\right)^{\mathrm{2}} \equiv\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\:\:\:\:\left(\mathrm{10k}+\mathrm{5}\right)^{\mathrm{2}} \equiv\mathrm{0}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\:\:\:\:\left(\mathrm{10k}+\mathrm{7}\right)^{\mathrm{2}} \equiv\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\:\:\:\:\left(\mathrm{10k}+\mathrm{9}\right)^{\mathrm{2}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$ \\ $$$$\:\:\:\mathrm{2}^{\mathrm{4t}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{5}\right)\rightarrow\begin{cases}{\left(\mathrm{10k}+\mathrm{1}\right)^{\mathrm{2}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{5}\right)}\\{\left(\mathrm{10k}+\mathrm{9}\right)^{\mathrm{2}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{5}\right)}\end{cases} \\ $$$$\:\:\:\mathrm{2}^{\mathrm{4t}+\mathrm{2}} \equiv\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right)\rightarrow\begin{cases}{\left(\mathrm{10k}+\mathrm{3}\right)^{\mathrm{2}} \equiv\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right)}\\{\left(\mathrm{10k}+\mathrm{7}\right)^{\mathrm{2}} \equiv\mathrm{4}\left(\mathrm{mod}\:\mathrm{5}\right)}\end{cases} \\ $$$$\:\:\:\left.\begin{matrix}{\:\mathrm{2}^{\mathrm{4t}+\mathrm{1}} \equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right)}\\{\:\mathrm{2}^{\mathrm{4t}+\mathrm{3}} \equiv\mathrm{3}\:\left(\mathrm{mod}\:\mathrm{5}\right)}\end{matrix}\right\}\:\rightarrow\mathrm{No}\:\mathrm{x} \\ $$$$\bullet\:\:\mathrm{y}\:\mathrm{is}\:\mathrm{either}\:\mathrm{4t}\:\mathrm{or}\:\mathrm{4t}+\mathrm{2}\:\mathrm{type} \\ $$$$\:\:\:\left(\mathrm{y}\in\mathbb{E}\right) \\ $$$$\:\:\:\mathrm{y}\rightarrow\mathrm{4t}\:\mathrm{type},\:\mathrm{x}\rightarrow\mathrm{10k}+\mathrm{1}\:\mathrm{or}\:\mathrm{10k}+\mathrm{9}\:\mathrm{type} \\ $$$$\:\:\:\mathrm{y}\rightarrow\mathrm{4t}+\mathrm{2}\:\mathrm{type},\:\mathrm{x}\rightarrow\mathrm{10k}+\mathrm{3}\:\mathrm{or}\:\mathrm{10k}+\mathrm{7}\:\mathrm{type} \\ $$$$\:\:\:\mathrm{2}^{\mathrm{4t}} −\left(\mathrm{10k}+\mathrm{1}\right)^{\mathrm{2}\:\:} =\mathrm{615} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\vee\:\mathrm{2}^{\mathrm{4t}} −\left(\mathrm{10k}+\mathrm{9}\right)^{\mathrm{2}} =\mathrm{615};\:\mathrm{t}\geqslant\mathrm{3}\:,\mathrm{k}\geqslant\mathrm{0} \\ $$$$\:\:_{\mathrm{x}=\mathrm{1},\mathrm{11},\mathrm{21},\mathrm{31}....\:\:\:\:\:\:\:\mathrm{or}\:\:\mathrm{9},\mathrm{19},\mathrm{29},\mathrm{39},\mathrm{49},\mathrm{59},\mathrm{69},...} ^{\mathrm{y}=\mathrm{12},\mathrm{16},\mathrm{20},...} \\ $$$$\:\:\left[\:\mathrm{y}=\mathrm{12}\:\&\:\mathrm{x}=\mathrm{59}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}.\right] \\ $$$$\:\:\:\mathrm{2}^{\mathrm{4t}+\mathrm{2}} −\left(\mathrm{10k}+\mathrm{3}\right)^{\mathrm{2}\:\:} =\mathrm{615} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\vee\:\mathrm{2}^{\mathrm{4t}+\mathrm{2}} −\left(\mathrm{10k}+\mathrm{7}\right)^{\mathrm{2}} =\mathrm{615};\:\mathrm{t}\geqslant\mathrm{2}\:,\mathrm{k}\geqslant\mathrm{0} \\ $$$$\:_{\mathrm{x}=\mathrm{3},\mathrm{13},\mathrm{23},\mathrm{33},....\:\:\:\:\mathrm{or}\:\:\mathrm{7},\mathrm{17},\mathrm{27},\mathrm{37},...} ^{\mathrm{y}=\mathrm{10},\mathrm{14},\mathrm{18},\mathrm{22},....} \\ $$$$...... \\ $$$$\:\: \\ $$$$\:\:\:\: \\ $$$$\mathrm{Continue} \\ $$

Commented by Rasheed.Sindhi last updated on 11/Jun/19

⇒ { ((2^y ≡x^2 (mod 3))),((2^y ≡x^2 (mod 5))),((2^y ≡x^2 (mod 41))) :}  2^y ≡x^2 (mod 3)  ⇒2^y (mod 3)=x^2 (mod 3)   { ((      2^y ),2^0 ,2^1 ,2^2 ,2^3 ),((∽(md 3)),1,2,1,2) :}     2^(2t) ≡1(mod 5)     2^(2t+1) ≡2(mod 5)   { ((        x^2 ),1^2 ,3^2 ,5^2 ,7^2 ,9^2 ,(11^2 )),((∽(md 3)),1,0,1,1,0,1) :}  If  y is 2t type, x is 6k−5 or 6k−1 type  y=10,12,14,....x=1,7,13,19,..or  x=5,11,17,23,....  Continue

$$\Rightarrow\begin{cases}{\mathrm{2}^{\mathrm{y}} \equiv\mathrm{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{3}\right)}\\{\mathrm{2}^{\mathrm{y}} \equiv\mathrm{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{5}\right)}\\{\mathrm{2}^{\mathrm{y}} \equiv\mathrm{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{41}\right)}\end{cases} \\ $$$$\mathrm{2}^{\mathrm{y}} \equiv\mathrm{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$$\Rightarrow\mathrm{2}^{\mathrm{y}} \left(\mathrm{mod}\:\mathrm{3}\right)=\mathrm{x}^{\mathrm{2}} \left(\mathrm{mod}\:\mathrm{3}\right) \\ $$$$\begin{cases}{\:\:\:\:\:\:\mathrm{2}^{\mathrm{y}} }&{\mathrm{2}^{\mathrm{0}} }&{\mathrm{2}^{\mathrm{1}} }&{\mathrm{2}^{\mathrm{2}} }&{\mathrm{2}^{\mathrm{3}} }\\{\backsim\left(\mathrm{md}\:\mathrm{3}\right)}&{\mathrm{1}}&{\mathrm{2}}&{\mathrm{1}}&{\mathrm{2}}\end{cases} \\ $$$$\:\:\:\mathrm{2}^{\mathrm{2t}} \equiv\mathrm{1}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\:\:\:\mathrm{2}^{\mathrm{2t}+\mathrm{1}} \equiv\mathrm{2}\left(\mathrm{mod}\:\mathrm{5}\right) \\ $$$$\begin{cases}{\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} }&{\mathrm{1}^{\mathrm{2}} }&{\mathrm{3}^{\mathrm{2}} }&{\mathrm{5}^{\mathrm{2}} }&{\mathrm{7}^{\mathrm{2}} }&{\mathrm{9}^{\mathrm{2}} }&{\mathrm{11}^{\mathrm{2}} }\\{\backsim\left(\mathrm{md}\:\mathrm{3}\right)}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{1}}&{\mathrm{1}}&{\mathrm{0}}&{\mathrm{1}}\end{cases} \\ $$$$\mathrm{If}\:\:\mathrm{y}\:\mathrm{is}\:\mathrm{2t}\:\mathrm{type},\:\mathrm{x}\:\mathrm{is}\:\mathrm{6k}−\mathrm{5}\:\mathrm{or}\:\mathrm{6k}−\mathrm{1}\:\mathrm{type} \\ $$$$\mathrm{y}=\mathrm{10},\mathrm{12},\mathrm{14},....\mathrm{x}=\mathrm{1},\mathrm{7},\mathrm{13},\mathrm{19},..\mathrm{or} \\ $$$$\mathrm{x}=\mathrm{5},\mathrm{11},\mathrm{17},\mathrm{23},.... \\ $$$$\mathrm{Continue} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com