Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 61861 by mr W last updated on 10/Jun/19

Commented by mr W last updated on 10/Jun/19

H is the orthocenter of triangle ABC.  Its distance to the vertexes is α, β, γ  respectively.  Find the side lengthes a, b, c of the  triangle.

HistheorthocenteroftriangleABC.Itsdistancetothevertexesisα,β,γrespectively.Findthesidelengthesa,b,cofthetriangle.

Commented by MJS last updated on 11/Jun/19

there should be 2 triangles (at least if the  triangle is not rectangular). H might be  outside the triangle...

thereshouldbe2triangles(atleastifthetriangleisnotrectangular).Hmightbeoutsidethetriangle...

Commented by MJS last updated on 11/Jun/19

the distances are  (1) α=((a(−a^2 +b^2 +c^2 ))/δ)  (2) β=((b(a^2 −b^2 +c^2 ))/δ)  (3) γ=((c(a^2 +b^2 −c^2 ))/δ)       [with δ=(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))]  we can solve this for given α, β, γ  for α=5, β=6, γ=7 I get   ((a),(b),(c) ) = (((5.142053)),((3.929466)),((1.562276)) ) ∨  ((a),(b),(c) ) = (((10.94952)),((10.43514)),((9.792451)) )  the 3^(rd)  solution is not valid because a, b, c ∉R

thedistancesare(1)α=a(a2+b2+c2)δ(2)β=b(a2b2+c2)δ(3)γ=c(a2+b2c2)δ[withδ=(a+b+c)(a+b+c)(ab+c)(a+bc)]wecansolvethisforgivenα,β,γforα=5,β=6,γ=7Iget(abc)=(5.1420533.9294661.562276)(abc)=(10.9495210.435149.792451)the3rdsolutionisnotvalidbecausea,b,cR

Commented by mr W last updated on 12/Jun/19

thank you sir! can we get the formula  for a,b,c in terms of α,β,γ?

thankyousir!canwegettheformulafora,b,cintermsofα,β,γ?

Commented by MJS last updated on 12/Jun/19

transformed equations:  (1)  a^6 +a^4 (α^2 −2(b^2 +c^2 ))−a^2 (2α^2 (b^2 +c^2 )−(b^2 +c^2 )^2 )+α^2 (b^2 −c^2 )^2 =0  (2)  b^6 +b^4 (β^2 −2(a^2 +c^2 ))−b^2 (2β^2 (a^2 +c^2 )−(a^2 +c^2 )^2 )+β^2 (a^2 −c^2 )^2 =0  (3)  c^6 +c^4 (γ^2 −2(a^2 +b^2 ))−c^2 (2γ^2 (a^2 +b^2 )−(a^2 +b^2 )^2 )+γ^2 (a^2 −b^2 )^2 =0  these are of degree 6 for the leading variable  but only of degree 4 for the 2 others. we can  omit a^4  from (2) and (3)  (2) Aa^4 +...  (3) Ba^4 +...  B×(2)−A×(3) leads to  −4a^2 b^2 c^2 (b^2 −c^2 +β^2 −γ^2 )=0  ⇒ c^2 =b^2 +β^2 −γ^2   now (2)=(3) is of the form Pb^2 +Q=0  ⇒ b^2 =((β^2 (a^2 −β^2 +γ^2 )^2 )/((a+β+γ)(−a+β+γ)(a−β+γ)(a+β−γ)))  we are left with (1) which leads to  a^(14) +Ba^(12) +Ca^(10) +Da^8 +Ea^6 +Fa^4 +Ga^2 +H=0  a=(√s)  s^7 +Bs^6 +Cs^5 +Ds^4 +Es^3 +Fs^2 +Gs+H=0  with H=α^2 (β−γ)^6 (β+γ)^6 . luckily we find  that ±(β^2 −γ^2 ) are double zeros each ⇒  s^3 +(α^2 −2(β^2 +γ^2 ))s^2 −(2α^2 (β^2 +γ^2 )−(β^2 +γ^2 )^2 )s+α^2 (β^2 −γ^2 )^2 =0  (which btw looks exactly like the above equations)  s=t−((α^2 −2(β^2 +γ^2 ))/3)  t^3 −(((α^2 +β^2 +γ^2 )^2 )/3)t+((2(α^2 +β^2 +γ^2 )^3 )/(27))−4α^2 β^2 γ^2 =0  this has got 3 real solutions for α, β, γ ∈R  ⇒ we need the trigonometric method which  gives no useable general solution in this case

transformedequations:(1)a6+a4(α22(b2+c2))a2(2α2(b2+c2)(b2+c2)2)+α2(b2c2)2=0(2)b6+b4(β22(a2+c2))b2(2β2(a2+c2)(a2+c2)2)+β2(a2c2)2=0(3)c6+c4(γ22(a2+b2))c2(2γ2(a2+b2)(a2+b2)2)+γ2(a2b2)2=0theseareofdegree6fortheleadingvariablebutonlyofdegree4forthe2others.wecanomita4from(2)and(3)(2)Aa4+...(3)Ba4+...B×(2)A×(3)leadsto4a2b2c2(b2c2+β2γ2)=0c2=b2+β2γ2now(2)=(3)isoftheformPb2+Q=0b2=β2(a2β2+γ2)2(a+β+γ)(a+β+γ)(aβ+γ)(a+βγ)weareleftwith(1)whichleadstoa14+Ba12+Ca10+Da8+Ea6+Fa4+Ga2+H=0a=ss7+Bs6+Cs5+Ds4+Es3+Fs2+Gs+H=0withH=α2(βγ)6(β+γ)6.luckilywefindthat±(β2γ2)aredoublezeroseachs3+(α22(β2+γ2))s2(2α2(β2+γ2)(β2+γ2)2)s+α2(β2γ2)2=0(whichbtwlooksexactlyliketheaboveequations)s=tα22(β2+γ2)3t3(α2+β2+γ2)23t+2(α2+β2+γ2)3274α2β2γ2=0thishasgot3realsolutionsforα,β,γRweneedthetrigonometricmethodwhichgivesnouseablegeneralsolutioninthiscase

Answered by ajfour last updated on 10/Jun/19

Commented by ajfour last updated on 10/Jun/19

A(α,0)   ;  B(−x,(√(β^2 −x^2 ))) ;  C(−x,−(√(γ^2 −x^2 )))  BH⊥AC  ⇒    ((√(γ^2 −x^2 ))/(α+x))=(x/(√(β^2 −x^2 )))  ⇒   (β^2 −x^2 )(γ^2 −x^2 )=x^2 (α+x)^2   2αx^3 +(α^2 +β^2 +γ^2 )x^2 −β^2 γ^2 =0  (x is obtained from this eq.)  Now               a=∣(√(β^2 −x^2 ))±(√(γ^2 −x^2 ))∣                         (one of the two signs)            b=(√((α+x)^2 +γ^2 −x^2 ))            c=(√((α+x)^2 +β^2 −x^2 ))   .

A(α,0);B(x,β2x2);C(x,γ2x2)BHACγ2x2α+x=xβ2x2(β2x2)(γ2x2)=x2(α+x)22αx3+(α2+β2+γ2)x2β2γ2=0(xisobtainedfromthiseq.)Nowa=∣β2x2±γ2x2(oneofthetwosigns)b=(α+x)2+γ2x2c=(α+x)2+β2x2.

Commented by mr W last updated on 10/Jun/19

thank you sir! i tried the same way.  but the cubic equation has usually 3  solutions. how can we see which one  is the right one? or is the triangle  unique?

thankyousir!itriedthesameway.butthecubicequationhasusually3solutions.howcanweseewhichoneistherightone?oristhetriangleunique?

Answered by mr W last updated on 12/Jun/19

Commented by mr W last updated on 21/Jun/19

assume α≥β≥γ.  let HD=u=λα  BD=(√(β^2 −u^2 ))  DC=(√(γ^2 −u^2 ))  ((DC)/(HD))=((AD)/(BD))  ((√(γ^2 −u^2 ))/u)=((u+α)/(√(β^2 −u^2 )))  ⇒(√((β^2 −u^2 )(γ^2 −u^2 )))=u(u+α)  ⇒(β^2 −u^2 )(γ^2 −u^2 )=u^2 (u^2 +2αu+α^2 )  ⇒2αu^3 +(α^2 +β^2 +γ^2 )u^2 −β^2 γ^2 =0  ⇒λ^3 +((α^2 +β^2 +γ^2 )/(2α^2 ))λ^2 −((β^2 γ^2 )/(2α^4 ))=0  with q=((α^2 +β^2 +γ^2 )/(6α^2 )), r=((β^2 γ^2 )/(4α^4 ))  let p=(r/q^3 )=((54α^2 β^2 γ^2 )/((α^2 +β^2 +γ^2 )^3 ))≤2  ⇒λ^3 +3qλ^2 −2r=0  with λ=s−q  ⇒s^3 −3q^2 s+2(q^3 −r)=0  Δ=(−q^2 )^3 +(q^3 −r)^2 =−(2−(r/q^3 ))rq^3 <0  ⇒s=2q sin {(1/3)[sin^(−1) (1−p)+2kπ]}, k=0,1,2  ⇒λ=s−q=q{2 sin [(1/3) sin^(−1) (1−p)+(2/3)kπ]−1}, k=0,1,2  two solutions are suitable: k=0 and 1  ⇒λ=q[2 sin {(1/3) sin^(−1) (1−p)}−1]<0 or  ⇒λ=q[2 sin {(1/3) sin^(−1) (1−p)+((2π)/3)}−1]>0  ⇒a=(√(β^2 −λ^2 α^2 ))±(√(γ^2 −λ^2 α^2 ))   (−ve for λ<0)  ⇒b=(√((1+2λ)α^2 +γ^2 ))  ⇒c=(√((1+2λ)α^2 +β^2 ))    example: α=7, β=6, γ=5  ⇒λ=0.35604 / −0.597544  ⇒a=9.792451 / 1.562276  ⇒b=10.435137 / 3.929466  ⇒c=10.949525 / 5.142053

assumeαβγ.letHD=u=λαBD=β2u2DC=γ2u2DCHD=ADBDγ2u2u=u+αβ2u2(β2u2)(γ2u2)=u(u+α)(β2u2)(γ2u2)=u2(u2+2αu+α2)2αu3+(α2+β2+γ2)u2β2γ2=0λ3+α2+β2+γ22α2λ2β2γ22α4=0withq=α2+β2+γ26α2,r=β2γ24α4letp=rq3=54α2β2γ2(α2+β2+γ2)32λ3+3qλ22r=0withλ=sqs33q2s+2(q3r)=0Δ=(q2)3+(q3r)2=(2rq3)rq3<0s=2qsin{13[sin1(1p)+2kπ]},k=0,1,2λ=sq=q{2sin[13sin1(1p)+23kπ]1},k=0,1,2twosolutionsaresuitable:k=0and1λ=q[2sin{13sin1(1p)}1]<0orλ=q[2sin{13sin1(1p)+2π3}1]>0a=β2λ2α2±γ2λ2α2(veforλ<0)b=(1+2λ)α2+γ2c=(1+2λ)α2+β2example:α=7,β=6,γ=5λ=0.35604/0.597544a=9.792451/1.562276b=10.435137/3.929466c=10.949525/5.142053

Commented by MJS last updated on 12/Jun/19

yes you′re right

yesyoureright

Answered by ajfour last updated on 12/Jun/19

Commented by mr W last updated on 13/Jun/19

thank you for this new way sir!  it seems that all methods lead finally  to a cubic equation.

thankyouforthisnewwaysir!itseemsthatallmethodsleadfinallytoacubicequation.

Commented by ajfour last updated on 13/Jun/19

let B origin.  H(βcos θ,βsin θ)    ....(i)  A(βcos θ,βsin θ±α)    ...(ii)  eq. of AB:        y=xcot φ    eq. of AC:     y=−(x−a)cot θ  y_A =x_A cot φ=(a−x_A )cot θ  ⇒  x_A =((acot θ)/(cot θ+cot φ))=βcos θ   [see (i)]  and  y_A =x_A cot φ = βsin θ±α  [see (ii)]  Also  βsin θ=γsin φ     ⇒  βcos θcot φ=βsin θ±α     (βcos θ)(((±(√(1−((β^2 sin^2 θ)/γ^2 ))))/((βsin θ)/γ)))=βsin θ±α  let  sin^2 θ=t  ⇒  (1−t)(γ^2 −β^2 t)=t(β^2 t+α^2 ±2αβ(√t))  ⇒  γ^2 −β^2 t−γ^2 t+β^2 t^2 =β^2 t^2 +α^2 t±2αβt(√t)  ⇒ 4α^2 β^2 t^3 =[γ^2 −(α^2 +β^2 +γ^2 )t]^2   or     4α^2 β^2 t^3 −(α^2 +β^2 +γ^2 )^2 t^2                +2γ^2 (α^2 +β^2 +γ^2 )^2 t−γ^4 =0  for α=7, β=6, γ=5  ....

letBorigin.H(βcosθ,βsinθ)....(i)A(βcosθ,βsinθ±α)...(ii)eq.ofAB:y=xcotϕeq.ofAC:y=(xa)cotθyA=xAcotϕ=(axA)cotθxA=acotθcotθ+cotϕ=βcosθ[see(i)]andyA=xAcotϕ=βsinθ±α[see(ii)]Alsoβsinθ=γsinϕβcosθcotϕ=βsinθ±α(βcosθ)(±1β2sin2θγ2βsinθγ)=βsinθ±αletsin2θ=t(1t)(γ2β2t)=t(β2t+α2±2αβt)γ2β2tγ2t+β2t2=β2t2+α2t±2αβtt4α2β2t3=[γ2(α2+β2+γ2)t]2or4α2β2t3(α2+β2+γ2)2t2+2γ2(α2+β2+γ2)2tγ4=0forα=7,β=6,γ=5....

Commented by ajfour last updated on 13/Jun/19

Commented by ajfour last updated on 13/Jun/19

x=sin^2 θ , a is α, b=β, c=γ  (just for the calculator results)  sin^2 θ=1.05631  goes invalid  hence two triangles are possible.

x=sin2θ,aisα,b=β,c=γ(justforthecalculatorresults)sin2θ=1.05631goesinvalidhencetwotrianglesarepossible.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com