Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 61937 by Tawa1 last updated on 12/Jun/19

find the value of     Σ_(n = 0) ^∞   ((n^3  + 5)/(n!))

findthevalueofn=0n3+5n!

Commented by mr W last updated on 12/Jun/19

seems to be 10e.  others should prove.

seemstobe10e.othersshouldprove.

Commented by Tawa1 last updated on 12/Jun/19

Yes,  10e is correct, but workings sir

Yes,10eiscorrect,butworkingssir

Commented by maxmathsup by imad last updated on 12/Jun/19

let S =Σ_(n=0) ^∞  ((n^3 +5)/(n!)) ⇒S =Σ_(n=0) ^∞  (n^3 /(n!)) +5 Σ_(n=0) ^∞  (1/(n!))  we have Σ_(n=0) ^∞  (x^n /(n!)) =e^x    with radius R=∞ ⇒Σ_(n=0) ^∞  (1/(n!)) =e   Σ_(n=0) ^∞  (n^3 /(n!)) =Σ_(n=1) ^∞  (n^2 /((n−1)!)) =Σ_(n=0) ^∞  (((n+1)^2 )/(n!)) =Σ_(n=0) ^∞  ((n^2  +2n+1)/(n!))  =Σ_(n=1) ^∞  (n/((n−1)!)) +2 Σ_(n=1) ^∞  (1/((n−1)!)) +Σ_(n=0) ^∞  (1/(n!))  =Σ_(n=0) ^∞  ((n+1)/(n!)) +2Σ_(n=0) ^∞  (1/(n!)) +e =Σ_(n=1) ^∞  (1/((n−1)!)) +Σ_(n=0) ^∞  (1/(n!)) +3e  =Σ_(n=0) ^∞  (1/(n!)) +4e =5e ⇒ S = 5e +5e =10e .

letS=n=0n3+5n!S=n=0n3n!+5n=01n!wehaven=0xnn!=exwithradiusR=n=01n!=en=0n3n!=n=1n2(n1)!=n=0(n+1)2n!=n=0n2+2n+1n!=n=1n(n1)!+2n=11(n1)!+n=01n!=n=0n+1n!+2n=01n!+e=n=11(n1)!+n=01n!+3e=n=01n!+4e=5eS=5e+5e=10e.

Commented by Tawa1 last updated on 12/Jun/19

God bless you sir

Godblessyousir

Commented by maxmathsup by imad last updated on 12/Jun/19

you are welcome .

youarewelcome.

Answered by mr W last updated on 12/Jun/19

f(x)=Σ_(n=0) ^∞ (((n^3 +5)x^n )/(n!))  =Σ_(n=0) ^∞ ((n^3 x^n )/(n!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=1) ^∞ ((n^2 x^n )/((n−1)!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (((n+1)^2 x^(n+1) )/(n!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (((n^2 +2n+1)x^(n+1) )/(n!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ ((n^2 x^(n+1) )/(n!))+2Σ_(n=0) ^∞ ((nx^(n+1) )/(n!))+Σ_(n=0) ^∞ (x^(n+1) /(n!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=1) ^∞ ((nx^(n+1) )/((n−1)!))+2Σ_(n=1) ^∞ (x^(n+1) /((n−1)!))+xΣ_(n=0) ^∞ (x^n /(n!))+5Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (((n+1)x^(n+2) )/(n!))+2Σ_(n=0) ^∞ (x^(n+2) /(n!))+(x+5)Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (((n+1)x^(n+2) )/(n!))+2x^2 Σ_(n=0) ^∞ (x^n /(n!))+(x+5)Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (((n+1)x^(n+2) )/(n!))+(2x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ ((nx^(n+2) )/(n!))+Σ_(n=0) ^∞ (x^(n+2) /(n!))+(2x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=1) ^∞ (x^(n+2) /((n−1)!))+x^2 Σ_(n=0) ^∞ (x^n /(n!))+(2x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =Σ_(n=0) ^∞ (x^(n+3) /(n!))+(3x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =x^3 Σ_(n=0) ^∞ (x^n /(n!))+(3x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =(x^3 +3x^2 +x+5)Σ_(n=0) ^∞ (x^n /(n!))  =(x^3 +3x^2 +x+5)e^x     ⇒Σ_(n=0) ^∞ (((n^3 +5)x^n )/(n!))=(x^3 +3x^2 +x+5)e^x   with x=1:  ⇒Σ_(n=0) ^∞ ((n^3 +5)/(n!))=(1^3 +3×1^2 +1+5)e^1 =10e    with x=2:  ⇒Σ_(n=0) ^∞ ((2^n (n^3 +5))/(n!))=(2^3 +3×2^2 +2+5)e^2 =27e^2   with x=(1/2):  ⇒Σ_(n=0) ^∞ (((n^3 +5))/(n!2^n ))=((1/2^3 )+3×(1/2^2 )+(1/2)+5)e^(1/2) =((51(√e))/8)

f(x)=n=0(n3+5)xnn!=n=0n3xnn!+5n=0xnn!=n=1n2xn(n1)!+5n=0xnn!=n=0(n+1)2xn+1n!+5n=0xnn!=n=0(n2+2n+1)xn+1n!+5n=0xnn!=n=0n2xn+1n!+2n=0nxn+1n!+n=0xn+1n!+5n=0xnn!=n=1nxn+1(n1)!+2n=1xn+1(n1)!+xn=0xnn!+5n=0xnn!=n=0(n+1)xn+2n!+2n=0xn+2n!+(x+5)n=0xnn!=n=0(n+1)xn+2n!+2x2n=0xnn!+(x+5)n=0xnn!=n=0(n+1)xn+2n!+(2x2+x+5)n=0xnn!=n=0nxn+2n!+n=0xn+2n!+(2x2+x+5)n=0xnn!=n=1xn+2(n1)!+x2n=0xnn!+(2x2+x+5)n=0xnn!=n=0xn+3n!+(3x2+x+5)n=0xnn!=x3n=0xnn!+(3x2+x+5)n=0xnn!=(x3+3x2+x+5)n=0xnn!=(x3+3x2+x+5)exn=0(n3+5)xnn!=(x3+3x2+x+5)exwithx=1:n=0n3+5n!=(13+3×12+1+5)e1=10ewithx=2:n=02n(n3+5)n!=(23+3×22+2+5)e2=27e2withx=12:n=0(n3+5)n!2n=(123+3×122+12+5)e12=51e8

Commented by mr W last updated on 12/Jun/19

thank you sirs!

thankyousirs!

Commented by MJS last updated on 12/Jun/19

great job!

greatjob!

Commented by Tawa1 last updated on 12/Jun/19

God bless you sir.

Godblessyousir.

Commented by Prithwish sen last updated on 12/Jun/19

excellent sir

excellentsir

Commented by malwaan last updated on 13/Jun/19

FANTASTIC sir !

FANTASTICsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com