Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 61994 by ajfour last updated on 13/Jun/19

Commented by ajfour last updated on 13/Jun/19

Find the r of largest size sphere   that can rest against the rim of  cylinder on one side and the  stick on the other side.

$${Find}\:{the}\:\boldsymbol{{r}}\:{of}\:{largest}\:{size}\:{sphere}\: \\ $$$${that}\:{can}\:{rest}\:{against}\:{the}\:{rim}\:{of} \\ $$$${cylinder}\:{on}\:{one}\:{side}\:{and}\:{the} \\ $$$${stick}\:{on}\:{the}\:{other}\:{side}. \\ $$

Answered by mr W last updated on 13/Jun/19

((r+h)/r)=((√((2R)^2 +h^2 ))/(2R))  ⇒r_(max) =(h/((√(1+((h/(2R)))^2 ))−1))

$$\frac{{r}+{h}}{{r}}=\frac{\sqrt{\left(\mathrm{2}{R}\right)^{\mathrm{2}} +{h}^{\mathrm{2}} }}{\mathrm{2}{R}} \\ $$$$\Rightarrow{r}_{{max}} =\frac{{h}}{\sqrt{\mathrm{1}+\left(\frac{{h}}{\mathrm{2}{R}}\right)^{\mathrm{2}} }−\mathrm{1}} \\ $$

Commented by ajfour last updated on 13/Jun/19

not surprising, seems natural Sir.  I just viewed your conclusion sir.

$${not}\:{surprising},\:{seems}\:{natural}\:{Sir}. \\ $$$${I}\:{just}\:{viewed}\:{your}\:{conclusion}\:{sir}. \\ $$

Commented by mr W last updated on 13/Jun/19

Commented by mr W last updated on 13/Jun/19

this is maybe not the largest possible  sphere, since the stick (blue line) can  also be in other positions. it only   needs to touch the sphere.

$${this}\:{is}\:{maybe}\:{not}\:{the}\:{largest}\:{possible} \\ $$$${sphere},\:{since}\:{the}\:{stick}\:\left({blue}\:{line}\right)\:{can} \\ $$$${also}\:{be}\:{in}\:{other}\:{positions}.\:{it}\:{only}\: \\ $$$${needs}\:{to}\:{touch}\:{the}\:{sphere}. \\ $$

Commented by mr W last updated on 13/Jun/19

Commented by ajfour last updated on 13/Jun/19

O′ yes, understood sir, sphere  can be balanced at one point even.  Thanks.

$${O}'\:{yes},\:{understood}\:{sir},\:{sphere} \\ $$$${can}\:{be}\:{balanced}\:{at}\:{one}\:{point}\:{even}. \\ $$$${Thanks}. \\ $$

Commented by mr W last updated on 13/Jun/19

position of stick is θ. it touches the  sphere at point P.  C(−R, 0, h+r)  A(−R cos θ, −R sin θ, 0)  B(R cos θ, R sin θ, h)  eqn. of line AB (stick):  ((x+R cos θ)/(2R cos θ))=((y+R sin θ)/(2R sin θ))=(z/h)=k  ⇒x=R cos θ(2k−1)  ⇒y=R sin θ(2k−1)  ⇒z=hk  distance from point C to line AB=d:  D=d^2 =[R cos θ (2k−1)+R]^2 +[R sin θ (2k−1))]^2 +[hk−h−r]^2   =2R^2 [2k^2 −(2k−1)(1−cos θ)]+(hk−h−r)^2   =4R^2 [k^2 −(2k−1) sin^2  (θ/2)]+(hk−h−r)^2   (dD/dk)=0  4R^2 (k−sin^2  (θ/2))+(hk−h−r)h=0  ⇒k=(((h+r)h+4R^2 sin^2  (θ/2))/(4R^2 +h^2 ))=((1+4((R/h))^2 sin^2  (θ/2)+(r/h))/(1+4((R/h))^2 ))  ((r/h))^2 =4((R/h))^2 [k^2 −(2k−1) sin^2  (θ/2)]+(k−1−(r/h))^2   let ρ=(R/h), λ=(r/h)  ⇒k=1+((λ−4ρ^2  cos^2  (θ/2))/(1+4ρ^2 ))  0=4ρ^2 [((λ/(1+4ρ^2 ))−((4ρ^2  cos^2  (θ/2))/(1+4ρ^2 )))^2 −2((λ/(1+4ρ^2 ))−((4ρ^2  cos^2  (θ/2))/(1+4ρ^2 ))) cos^2  (θ/2)−cos^2  (θ/2)]+((λ/(1+4ρ^2 ))−((4ρ^2  cos^2  (θ/2))/(1+4ρ^2 ))−2λ)((λ/(1+4ρ^2 ))−((4ρ^2  cos^2  (θ/2))/(1+4ρ^2 )))  ⇒max. λ is when θ=0

$${position}\:{of}\:{stick}\:{is}\:\theta.\:{it}\:{touches}\:{the} \\ $$$${sphere}\:{at}\:{point}\:{P}. \\ $$$${C}\left(−{R},\:\mathrm{0},\:{h}+{r}\right) \\ $$$${A}\left(−{R}\:\mathrm{cos}\:\theta,\:−{R}\:\mathrm{sin}\:\theta,\:\mathrm{0}\right) \\ $$$${B}\left({R}\:\mathrm{cos}\:\theta,\:{R}\:\mathrm{sin}\:\theta,\:{h}\right) \\ $$$${eqn}.\:{of}\:{line}\:{AB}\:\left({stick}\right): \\ $$$$\frac{{x}+{R}\:\mathrm{cos}\:\theta}{\mathrm{2}{R}\:\mathrm{cos}\:\theta}=\frac{{y}+{R}\:\mathrm{sin}\:\theta}{\mathrm{2}{R}\:\mathrm{sin}\:\theta}=\frac{{z}}{{h}}={k} \\ $$$$\Rightarrow{x}={R}\:\mathrm{cos}\:\theta\left(\mathrm{2}{k}−\mathrm{1}\right) \\ $$$$\Rightarrow{y}={R}\:\mathrm{sin}\:\theta\left(\mathrm{2}{k}−\mathrm{1}\right) \\ $$$$\Rightarrow{z}={hk} \\ $$$${distance}\:{from}\:{point}\:{C}\:{to}\:{line}\:{AB}={d}: \\ $$$$\left.{D}={d}^{\mathrm{2}} =\left[{R}\:\mathrm{cos}\:\theta\:\left(\mathrm{2}{k}−\mathrm{1}\right)+{R}\right]^{\mathrm{2}} +\left[{R}\:\mathrm{sin}\:\theta\:\left(\mathrm{2}{k}−\mathrm{1}\right)\right)\right]^{\mathrm{2}} +\left[{hk}−{h}−{r}\right]^{\mathrm{2}} \\ $$$$=\mathrm{2}{R}^{\mathrm{2}} \left[\mathrm{2}{k}^{\mathrm{2}} −\left(\mathrm{2}{k}−\mathrm{1}\right)\left(\mathrm{1}−\mathrm{cos}\:\theta\right)\right]+\left({hk}−{h}−{r}\right)^{\mathrm{2}} \\ $$$$=\mathrm{4}{R}^{\mathrm{2}} \left[{k}^{\mathrm{2}} −\left(\mathrm{2}{k}−\mathrm{1}\right)\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\right]+\left({hk}−{h}−{r}\right)^{\mathrm{2}} \\ $$$$\frac{{dD}}{{dk}}=\mathrm{0} \\ $$$$\mathrm{4}{R}^{\mathrm{2}} \left({k}−\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\right)+\left({hk}−{h}−{r}\right){h}=\mathrm{0} \\ $$$$\Rightarrow{k}=\frac{\left({h}+{r}\right){h}+\mathrm{4}{R}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}}{\mathrm{4}{R}^{\mathrm{2}} +{h}^{\mathrm{2}} }=\frac{\mathrm{1}+\mathrm{4}\left(\frac{{R}}{{h}}\right)^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}+\frac{{r}}{{h}}}{\mathrm{1}+\mathrm{4}\left(\frac{{R}}{{h}}\right)^{\mathrm{2}} } \\ $$$$\left(\frac{{r}}{{h}}\right)^{\mathrm{2}} =\mathrm{4}\left(\frac{{R}}{{h}}\right)^{\mathrm{2}} \left[{k}^{\mathrm{2}} −\left(\mathrm{2}{k}−\mathrm{1}\right)\:\mathrm{sin}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\right]+\left({k}−\mathrm{1}−\frac{{r}}{{h}}\right)^{\mathrm{2}} \\ $$$${let}\:\rho=\frac{{R}}{{h}},\:\lambda=\frac{{r}}{{h}} \\ $$$$\Rightarrow{k}=\mathrm{1}+\frac{\lambda−\mathrm{4}\rho^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}}{\mathrm{1}+\mathrm{4}\rho^{\mathrm{2}} } \\ $$$$\mathrm{0}=\mathrm{4}\rho^{\mathrm{2}} \left[\left(\frac{\lambda}{\mathrm{1}+\mathrm{4}\rho^{\mathrm{2}} }−\frac{\mathrm{4}\rho^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}}{\mathrm{1}+\mathrm{4}\rho^{\mathrm{2}} }\right)^{\mathrm{2}} −\mathrm{2}\left(\frac{\lambda}{\mathrm{1}+\mathrm{4}\rho^{\mathrm{2}} }−\frac{\mathrm{4}\rho^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}}{\mathrm{1}+\mathrm{4}\rho^{\mathrm{2}} }\right)\:\mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}−\mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}\right]+\left(\frac{\lambda}{\mathrm{1}+\mathrm{4}\rho^{\mathrm{2}} }−\frac{\mathrm{4}\rho^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}}{\mathrm{1}+\mathrm{4}\rho^{\mathrm{2}} }−\mathrm{2}\lambda\right)\left(\frac{\lambda}{\mathrm{1}+\mathrm{4}\rho^{\mathrm{2}} }−\frac{\mathrm{4}\rho^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\frac{\theta}{\mathrm{2}}}{\mathrm{1}+\mathrm{4}\rho^{\mathrm{2}} }\right) \\ $$$$\Rightarrow{max}.\:\lambda\:{is}\:{when}\:\theta=\mathrm{0} \\ $$

Commented by mr W last updated on 13/Jun/19

Commented by mr W last updated on 13/Jun/19

yes sir!  optimum in the nature is always in  symmetry.

$${yes}\:{sir}! \\ $$$${optimum}\:{in}\:{the}\:{nature}\:{is}\:{always}\:{in} \\ $$$${symmetry}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com