Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 6202 by sanusihammed last updated on 18/Jun/16

Commented by Rasheed Soomro last updated on 18/Jun/16

What is meant by  ′ persegi ′? Square?

$${What}\:{is}\:{meant}\:{by}\:\:'\:{persegi}\:'?\:{Square}? \\ $$

Answered by Rasheed Soomro last updated on 23/Jun/16

In △ABC,   ∣BC∣=(√(∣AC∣^2 +∣AB∣^2 ))                         =(√(2^2 +12^2 ))=(√(148))=2(√(37))  ∵ BCED is a square  ∴ ∣BC∣=∣CE∣=∣ED∣=∣BD∣=2(√(37))  and the diagonal        ∣BE∣=∣CD∣=(√((2(√(37)))^2 +(2(√(37)))^2 ))                                 =(√(2×4×37))=2(√(74))  The half diagonal        ∣CF∣=∣BF∣=∣DF∣=∣EF∣=(√(74))  tan (m∠ACB)=((∣AB∣)/(∣AC∣))=((12)/2)=6      m∠ACB=tan^(−1) 6≈80.5377°    In △ACF,  m∠ACF=45°+tan^(−1) 6≈125.5377°            ∣AC∣=2    and    ∣CF∣=(√(74))  ∣AF∣^2 =∣AC∣^2 +∣CF∣^2 −2∣AC∣∣CF∣cos (m∠ACF) [Cosine law]  ∣AF∣=(√((2)^2 +((√(74)))^2 −2(2)((√(74)))cos (125.5377°)))             =9.899  ((∣AC∣)/(sin(m∠ CFA)))=((∣AF∣)/(sin(m∠ ACF)))      [Sine law]  (2/(sin(m∠ CFA) ))=((9.899)/(sin(125.5377°) ))  sin(m∠ CFA)=((2sin(125.5377°))/(9.899))≈0.1644  m∠ CFA=sin^(−1) (0.1644)=9.462    In △CGF,  m∠GCF=45° [Angle between side and diagonal of square]                        ∣CF∣=(√(74))                     m∠CFG(=m∠CFA)=9.462                     m∠CGF=180°−45°−9.462°=125.538°  Using sine law                 ((∣GF∣)/(sin 45°)) =  ((∣CF∣)/(sin(125.538°)))                 ∣GF∣=  ((∣CF∣ sin(45))/(sin(125.538°)))=(((√(74)) sin 45)/(sin(125.538°)))  So,              ∣GF∣= 7.475

$${In}\:\bigtriangleup{ABC},\:\:\:\mid{BC}\mid=\sqrt{\mid{AC}\mid^{\mathrm{2}} +\mid{AB}\mid^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\sqrt{\mathrm{2}^{\mathrm{2}} +\mathrm{12}^{\mathrm{2}} }=\sqrt{\mathrm{148}}=\mathrm{2}\sqrt{\mathrm{37}} \\ $$$$\because\:{BCED}\:{is}\:{a}\:{square} \\ $$$$\therefore\:\mid{BC}\mid=\mid{CE}\mid=\mid{ED}\mid=\mid{BD}\mid=\mathrm{2}\sqrt{\mathrm{37}} \\ $$$${and}\:{the}\:{diagonal} \\ $$$$\:\:\:\:\:\:\mid{BE}\mid=\mid{CD}\mid=\sqrt{\left(\mathrm{2}\sqrt{\mathrm{37}}\right)^{\mathrm{2}} +\left(\mathrm{2}\sqrt{\mathrm{37}}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\sqrt{\mathrm{2}×\mathrm{4}×\mathrm{37}}=\mathrm{2}\sqrt{\mathrm{74}} \\ $$$${The}\:{half}\:{diagonal} \\ $$$$\:\:\:\:\:\:\mid{CF}\mid=\mid{BF}\mid=\mid{DF}\mid=\mid{EF}\mid=\sqrt{\mathrm{74}} \\ $$$$\mathrm{tan}\:\left({m}\angle{ACB}\right)=\frac{\mid{AB}\mid}{\mid{AC}\mid}=\frac{\mathrm{12}}{\mathrm{2}}=\mathrm{6} \\ $$$$\:\:\:\:{m}\angle{ACB}=\mathrm{tan}^{−\mathrm{1}} \mathrm{6}\approx\mathrm{80}.\mathrm{5377}° \\ $$$$ \\ $$$${In}\:\bigtriangleup{ACF},\:\:{m}\angle{ACF}=\mathrm{45}°+\mathrm{tan}^{−\mathrm{1}} \mathrm{6}\approx\mathrm{125}.\mathrm{5377}° \\ $$$$\:\:\:\:\:\:\:\:\:\:\mid{AC}\mid=\mathrm{2}\:\:\:\:{and}\:\:\:\:\mid{CF}\mid=\sqrt{\mathrm{74}} \\ $$$$\mid{AF}\mid^{\mathrm{2}} =\mid{AC}\mid^{\mathrm{2}} +\mid{CF}\mid^{\mathrm{2}} −\mathrm{2}\mid{AC}\mid\mid{CF}\mid\mathrm{cos}\:\left({m}\angle{ACF}\right)\:\left[{Cosine}\:{law}\right] \\ $$$$\mid{AF}\mid=\sqrt{\left(\mathrm{2}\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{74}}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{2}\right)\left(\sqrt{\mathrm{74}}\right)\mathrm{cos}\:\left(\mathrm{125}.\mathrm{5377}°\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{9}.\mathrm{899} \\ $$$$\frac{\mid{AC}\mid}{\mathrm{sin}\left({m}\angle\:{CFA}\right)}=\frac{\mid{AF}\mid}{\mathrm{sin}\left({m}\angle\:{ACF}\right)}\:\:\:\:\:\:\left[{Sine}\:{law}\right] \\ $$$$\frac{\mathrm{2}}{\mathrm{sin}\left({m}\angle\:{CFA}\right)\:}=\frac{\mathrm{9}.\mathrm{899}}{\mathrm{sin}\left(\mathrm{125}.\mathrm{5377}°\right)\:} \\ $$$$\mathrm{sin}\left({m}\angle\:{CFA}\right)=\frac{\mathrm{2sin}\left(\mathrm{125}.\mathrm{5377}°\right)}{\mathrm{9}.\mathrm{899}}\approx\mathrm{0}.\mathrm{1644} \\ $$$${m}\angle\:{CFA}=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{0}.\mathrm{1644}\right)=\mathrm{9}.\mathrm{462} \\ $$$$ \\ $$$${In}\:\bigtriangleup{CGF},\:\:{m}\angle{GCF}=\mathrm{45}°\:\left[{Angle}\:{between}\:{side}\:{and}\:{diagonal}\:{of}\:{square}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid{CF}\mid=\sqrt{\mathrm{74}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}\angle{CFG}\left(={m}\angle{CFA}\right)=\mathrm{9}.\mathrm{462} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}\angle{CGF}=\mathrm{180}°−\mathrm{45}°−\mathrm{9}.\mathrm{462}°=\mathrm{125}.\mathrm{538}° \\ $$$${Using}\:{sine}\:{law} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mid{GF}\mid}{\mathrm{sin}\:\mathrm{45}°}\:=\:\:\frac{\mid{CF}\mid}{\mathrm{sin}\left(\mathrm{125}.\mathrm{538}°\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid{GF}\mid=\:\:\frac{\mid{CF}\mid\:\mathrm{sin}\left(\mathrm{45}\right)}{\mathrm{sin}\left(\mathrm{125}.\mathrm{538}°\right)}=\frac{\sqrt{\mathrm{74}}\:\mathrm{sin}\:\mathrm{45}}{\mathrm{sin}\left(\mathrm{125}.\mathrm{538}°\right)} \\ $$$${So},\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid{GF}\mid=\:\mathrm{7}.\mathrm{475} \\ $$$$ \\ $$

Commented by sanusihammed last updated on 18/Jun/16

Thanks so much

$${Thanks}\:{so}\:{much} \\ $$

Commented by sandy_suhendra last updated on 22/Jun/16

I think in △ACF, ∠ACF≠90°   so, tan ∠CFA≠((AC)/(CF))

$${I}\:{think}\:{in}\:\bigtriangleup{ACF},\:\angle{ACF}\neq\mathrm{90}°\: \\ $$$${so},\:{tan}\:\angle{CFA}\neq\frac{{AC}}{{CF}} \\ $$

Commented by Rasheed Soomro last updated on 23/Jun/16

ThankS Sandy for mentioning!  It′s a mistake.I′m going to correct it.

$$\mathcal{T}{han}\Bbbk\mathcal{S}\:\mathcal{S}{andy}\:{for}\:{mentioning}! \\ $$$$\mathcal{I}{t}'{s}\:{a}\:\boldsymbol{{mistake}}.{I}'{m}\:{going}\:{to}\:{correct}\:{it}. \\ $$

Commented by Rasheed Soomro last updated on 23/Jun/16

Please check  my answer for errors now.  I have corrected it.Over all stratevy is  same.Only △ACF have been solved  as a general triangle.

$${Please}\:{check}\:\:{my}\:{answer}\:{for}\:{errors}\:{now}. \\ $$$${I}\:{have}\:{corrected}\:{it}.{Over}\:{all}\:{stratevy}\:{is} \\ $$$${same}.{Only}\:\bigtriangleup{ACF}\:{have}\:{been}\:{solved} \\ $$$${as}\:{a}\:{general}\:{triangle}. \\ $$

Commented by sandy_suhendra last updated on 25/Jun/16

It′s a great answer!

$${It}'{s}\:{a}\:{great}\:{answer}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com