Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 62023 by aliesam last updated on 14/Jun/19

Commented by MJS last updated on 14/Jun/19

French pgcd (x, y) is English gcd (x,y)

Frenchpgcd(x,y)isEnglishgcd(x,y)

Commented by MJS last updated on 14/Jun/19

the highest possible value of gcd (x, y) is  min (x, y)  for y=x we get x^2 +x=0 ⇒ x=−1 ∨ x=0  for gcd (x, y)=1 we get x(1−y)+y^2 +1=0  ⇒ x=((y^2 +1)/(y−1)) and I don′t think this has more  solutions than (x, y)=(5, 2) ∨ (5, 3)  for gcd (x, y)=x we get y=((x^2 ±(√(x^4 −4x^3 −4x)))/2)  not sure if there′s an x∈N ⇒ y∈N  for gcd (x, y)=y we get x=(y^2 /(y−1)) ⇒ (x, y)=(4, 2)

thehighestpossiblevalueofgcd(x,y)ismin(x,y)fory=xwegetx2+x=0x=1x=0forgcd(x,y)=1wegetx(1y)+y2+1=0x=y2+1y1andIdontthinkthishasmoresolutionsthan(x,y)=(5,2)(5,3)forgcd(x,y)=xwegety=x2±x44x34x2notsureiftheresanxNyNforgcd(x,y)=ywegetx=y2y1(x,y)=(4,2)

Commented by Rasheed.Sindhi last updated on 15/Jun/19

Thanks sir MJ^( ⧫) S!

ThankssirMJS!

Answered by MJS last updated on 14/Jun/19

I think we can only try  I found only 4 pairs  ((x),(y) ):  ((4),(2) ),  ((4),(6) ),  ((5),(2) ),  ((5),(3) )

IthinkwecanonlytryIfoundonly4pairs(xy):(42),(46),(52),(53)

Commented by Rasheed.Sindhi last updated on 14/Jun/19

Sir, can we determine number of  all such pairs?

Sir,canwedeterminenumberofallsuchpairs?

Commented by MJS last updated on 14/Jun/19

I′m afraid we cannot

Imafraidwecannot

Answered by Rasheed.Sindhi last updated on 14/Jun/19

   x+y^2 +(x,y)^3 =xy(x,y) :                (x,y)=gcd(x,y)  Let (x/((x,y)))=a & (y/((x,y)))=b         x=a(x,y) & y=b(x,y)    a(x,y)+( b(x,y) )^2 +(x,y)^3                      =a(x,y).b(x,y).(x,y)     a(x,y)+( b(x,y) )^2 +(x,y)^3                                        =ab(x,y)^3    a+b^2 (x,y)+(x,y)^2 =ab(x,y)^2   (ab−1)(x,y)^2 −b^2 (x,y)−a=0  (x,y)=((b^2 ±(√(b^4 +4a(ab−1))))/(2(ab−1)))    a,b are such that (a,b)=1  &  b^4 +4a(ab−1) is perfect square  & ((b^2 ±(√(b^4 +4a(ab−1))))/(2(ab−1)))∈N  ^• Let b=1      b^4 +4a(ab−1)=4a^2 −4a+1           =(2a−1)^2    (x,y)= ((b^2 ±(√(b^4 +4a(ab−1))))/(2(ab−1)))=((1±(2a−1))/(2(a−1)))        (x,y)=((1±2a∓1)/(2a−2))=((2a)/(2a−2)) or ((2−2a)/(2a−2))               (x,y)=(a/(a−1)) or −1        ⇒a=2⇒(x,y)=2  x=a(x,y)=2×2=4  y=b(x,y)=1×2=2  ^• Let b=2   △=b^4 +4a(ab−1)=8a^2 −4a+16     For a=5,△=8(5)^2 −4(5)+16=196     Perfect square  (x,y)=((2^2 ±14)/(18))=1  or − (5/9) (descardable)  x=a(x,y)=5(1)=5  y=b(x,y)=2(1)=2  Co∩tinue

x+y2+(x,y)3=xy(x,y):(x,y)=gcd(x,y)Letx(x,y)=a&y(x,y)=bx=a(x,y)&y=b(x,y)a(x,y)+(b(x,y))2+(x,y)3=a(x,y).b(x,y).(x,y)a(x,y)+(b(x,y))2+(x,y)3=ab(x,y)3a+b2(x,y)+(x,y)2=ab(x,y)2(ab1)(x,y)2b2(x,y)a=0(x,y)=b2±b4+4a(ab1)2(ab1)a,baresuchthat(a,b)=1&b4+4a(ab1)isperfectsquare&b2±b4+4a(ab1)2(ab1)NLetb=1b4+4a(ab1)=4a24a+1=(2a1)2(x,y)=b2±b4+4a(ab1)2(ab1)=1±(2a1)2(a1)(x,y)=1±2a12a2=2a2a2or22a2a2(x,y)=aa1or1a=2(x,y)=2x=a(x,y)=2×2=4y=b(x,y)=1×2=2Letb=2=b4+4a(ab1)=8a24a+16Fora=5,=8(5)24(5)+16=196Perfectsquare(x,y)=22±1418=1or59(descardable)x=a(x,y)=5(1)=5y=b(x,y)=2(1)=2Cotinue

Commented by aliesam last updated on 14/Jun/19

good bless sir

goodblesssir

Commented by Rasheed.Sindhi last updated on 14/Jun/19

AnOtherWay  From the above:  (ab−1)(x,y)^2 −b^2 (x,y)−a=0  ^• Let (x,y)=1  (ab−1)(1)^2 −b^2 (1)−a=0  ab−1−b^2 −a=0  b^2 −ab+a+1  b=((a±(√(a^2 −4(a+1))))/2)    For a=5 ,△= 5^2 −4(5+1)=1 (perfect square)  b=((5±1)/2)=3 or 2  x=a(x,y)=5(1)=5  y=b(x,y)=3(1)=3 or 2(1)=2  x=5,y=3  x=5,y=2  ^• Let (x,y)=2  (ab−1)(x,y)^2 −b^2 (x,y)−a=0  (ab−1)(2)^2 −b^2 (2)−a=0  4ab−4−2b^2 −a=0  2b^2 −4ab+a+4=0  b=((4a±(√(16a^2 −8(a+4))))/4)    =((4a±(√(16a^2 −8a−32)))/4)    =((4a±2(√(2(2a^2 −a−4))))/4)  For a=2 ,△=2(2.2^2 −2−4)=4 (perfect square)  b=((4(2)±2(√4))/4)=3,1  x=a(x,y)=2(2)=4  y=b(x,y)=3(2)=6  or  1(2)=2  x=4,y=6  x=4,y=2

AnOtherWayFromtheabove:(ab1)(x,y)2b2(x,y)a=0Let(x,y)=1(ab1)(1)2b2(1)a=0ab1b2a=0b2ab+a+1b=a±a24(a+1)2Fora=5,=524(5+1)=1(perfectsquare)b=5±12=3or2x=a(x,y)=5(1)=5y=b(x,y)=3(1)=3or2(1)=2x=5,y=3x=5,y=2Let(x,y)=2(ab1)(x,y)2b2(x,y)a=0(ab1)(2)2b2(2)a=04ab42b2a=02b24ab+a+4=0b=4a±16a28(a+4)4=4a±16a28a324=4a±22(2a2a4)4Fora=2,=2(2.2224)=4(perfectsquare)b=4(2)±244=3,1x=a(x,y)=2(2)=4y=b(x,y)=3(2)=6or1(2)=2x=4,y=6x=4,y=2

Commented by aliesam last updated on 14/Jun/19

thanks sir brilliant sol

thankssirbrilliantsol

Commented by Rasheed.Sindhi last updated on 15/Jun/19

You′re welcome sir!

Yourewelcomesir!

Answered by Rasheed.Sindhi last updated on 15/Jun/19

Experimentally   x+y^2 +(x,y)^3 =xy(x,y)  p_i  : prime number  Let      x=p_1 ^a_1  p_2 ^a_2  ..p_n ^a_n       a_i ≥0      y=p_1 ^b_1  p_2 ^b_2  ..p_n ^b_n      b_i ≥0  (x,y)=p_1 ^(min(a_1 ,b_1 )) .p_2 ^(min(a_2 ,b_2 )) ...p_n ^(min(a_n ,b_n ))   Let min(a_i ,b_i )=k_i     ∴ (x,y)=p_1 ^k_1  .p_2 ^k_2  ....p_n ^k_n    ^• (p_1 ^a_1  p_2 ^a_2  ..p_n ^a_n  )+(p_1 ^b_1  p_2 ^b_2  ..p_n ^b_n  )^2            +(p_1 ^k_1  .p_2 ^k_2  ...p_n ^k_n  )^3                                        =  (p_1 ^a_1  p_2 ^a_2  ..p_n ^a_n  )(p_1 ^b_1  p_2 ^b_2  ..p_n ^b_n  )(p_1 ^k_1  .p_2 ^k_2  ...p_n ^k_n  )    ^• (p_1 ^a_1  p_2 ^a_2  ..p_n ^a_n  )+(p_1 ^(2b_1 ) p_2 ^(2b_2 ) ..p_n ^(2b_n ) )           +(p_1 ^(3k_1 ) .p_2 ^(3k_2 ) ...p_n ^(3k_n ) )                                       =   p_1 ^(a_1 +b_1 +k_1 ) p_2 ^(a_2 +b_2 +k_2 ) ..p_n ^(a_n +b_n +k_n )     C_o NT_i N_(ue)

Experimentallyx+y2+(x,y)3=xy(x,y)pi:primenumberLetx=p1a1p2a2..pnanai0y=p1b1p2b2..pnbnbi0(x,y)=p1min(a1,b1).p2min(a2,b2)...pnmin(an,bn)Letmin(ai,bi)=ki(x,y)=p1k1.p2k2....pnkn(p1a1p2a2..pnan)+(p1b1p2b2..pnbn)2+(p1k1.p2k2...pnkn)3=(p1a1p2a2..pnan)(p1b1p2b2..pnbn)(p1k1.p2k2...pnkn)(p1a1p2a2..pnan)+(p12b1p22b2..pn2bn)+(p13k1.p23k2...pn3kn)=p1a1+b1+k1p2a2+b2+k2..pnan+bn+knCoNTiNue

Commented by aliesam last updated on 15/Jun/19

you are graet sir thank you

youaregraetsirthankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com