Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 62077 by naka3546 last updated on 15/Jun/19

∫_(  1) ^(            ∞)  (((ln x)/x))^(2018)  dx  =  ?  Any  trick(s)  to  solve  it ?

$$\underset{\:\:\mathrm{1}} {\overset{\:\:\:\:\:\:\:\:\:\:\:\:\infty} {\int}}\:\left(\frac{\mathrm{ln}\:{x}}{{x}}\right)^{\mathrm{2018}} \:{dx}\:\:=\:\:? \\ $$$${Any}\:\:{trick}\left({s}\right)\:\:{to}\:\:{solve}\:\:{it}\:? \\ $$

Answered by Smail last updated on 15/Jun/19

I_n =∫_1 ^∞ (((lnx)/x))^n dx  By parts  u=ln^n x⇒u′=n((ln^(n−1) x)/x)  v′=x^(−n) ⇒v=(x^(1−n) /(1−n))  I_n =(1/(1−n))[((ln^n x)/x^(n−1) )]_1 ^∞ +(n/(n−1))∫_1 ^∞ ((ln^(n−1) x)/x^n )dx  =(n/(n−1))∫_1 ^∞ ((ln^(n−1) x)/x^n )dx=(n/(n−1))(((n−1)/(n−1))∫_1 ^∞ ((ln^(n−2) x)/x^n )dx)  =((n(n−1)(n−2)...(n−(n−2)))/((n−1)^(n−1) ))∫_1 ^∞ ((ln^(n−(n−1)) x)/x^n )dx  =((n(n−1)...2)/((n−1)^(n−1) ))∫_1 ^∞ ((lnx)/x^n )dx  ((n!)/((n−1)^n ))∫_1 ^∞ (dx/x^n )=((n!)/((n−1)^n ))[((−1)/((n−1)x^(n−1) ))]_1 ^∞   I_n =((n!)/((n−1)^(n+1) ))  For n=2018  I_(2018) =∫_1 ^∞ (((lnx)/x))^(2018) =((2018!)/(2017^(2019) ))

$${I}_{{n}} =\int_{\mathrm{1}} ^{\infty} \left(\frac{{lnx}}{{x}}\right)^{{n}} {dx} \\ $$$${By}\:{parts} \\ $$$${u}={ln}^{{n}} {x}\Rightarrow{u}'={n}\frac{{ln}^{{n}−\mathrm{1}} {x}}{{x}} \\ $$$${v}'={x}^{−{n}} \Rightarrow{v}=\frac{{x}^{\mathrm{1}−{n}} }{\mathrm{1}−{n}} \\ $$$${I}_{{n}} =\frac{\mathrm{1}}{\mathrm{1}−{n}}\left[\frac{{ln}^{{n}} {x}}{{x}^{{n}−\mathrm{1}} }\right]_{\mathrm{1}} ^{\infty} +\frac{{n}}{{n}−\mathrm{1}}\int_{\mathrm{1}} ^{\infty} \frac{{ln}^{{n}−\mathrm{1}} {x}}{{x}^{{n}} }{dx} \\ $$$$=\frac{{n}}{{n}−\mathrm{1}}\int_{\mathrm{1}} ^{\infty} \frac{{ln}^{{n}−\mathrm{1}} {x}}{{x}^{{n}} }{dx}=\frac{{n}}{{n}−\mathrm{1}}\left(\frac{{n}−\mathrm{1}}{{n}−\mathrm{1}}\int_{\mathrm{1}} ^{\infty} \frac{{ln}^{{n}−\mathrm{2}} {x}}{{x}^{{n}} }{dx}\right) \\ $$$$=\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)...\left({n}−\left({n}−\mathrm{2}\right)\right)}{\left({n}−\mathrm{1}\right)^{{n}−\mathrm{1}} }\int_{\mathrm{1}} ^{\infty} \frac{{ln}^{{n}−\left({n}−\mathrm{1}\right)} {x}}{{x}^{{n}} }{dx} \\ $$$$=\frac{{n}\left({n}−\mathrm{1}\right)...\mathrm{2}}{\left({n}−\mathrm{1}\right)^{{n}−\mathrm{1}} }\int_{\mathrm{1}} ^{\infty} \frac{{lnx}}{{x}^{{n}} }{dx} \\ $$$$\frac{{n}!}{\left({n}−\mathrm{1}\right)^{{n}} }\int_{\mathrm{1}} ^{\infty} \frac{{dx}}{{x}^{{n}} }=\frac{{n}!}{\left({n}−\mathrm{1}\right)^{{n}} }\left[\frac{−\mathrm{1}}{\left({n}−\mathrm{1}\right){x}^{{n}−\mathrm{1}} }\right]_{\mathrm{1}} ^{\infty} \\ $$$${I}_{{n}} =\frac{{n}!}{\left({n}−\mathrm{1}\right)^{{n}+\mathrm{1}} } \\ $$$${For}\:{n}=\mathrm{2018} \\ $$$${I}_{\mathrm{2018}} =\int_{\mathrm{1}} ^{\infty} \left(\frac{{lnx}}{{x}}\right)^{\mathrm{2018}} =\frac{\mathrm{2018}!}{\mathrm{2017}^{\mathrm{2019}} } \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com