Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 62121 by ajfour last updated on 16/Jun/19

A cube of unit edge length   is held before a plane. Prove that  the sum of the squares of the  projected lengths of edges of the cube  on the plane (irrespective of  the orientation of the cube) is 8.

$${A}\:{cube}\:{of}\:{unit}\:{edge}\:{length}\: \\ $$$${is}\:{held}\:{before}\:{a}\:{plane}.\:{Prove}\:{that} \\ $$$${the}\:{sum}\:{of}\:{the}\:{squares}\:{of}\:{the} \\ $$$${projected}\:{lengths}\:{of}\:{edges}\:{of}\:{the}\:{cube} \\ $$$${on}\:{the}\:{plane}\:\left({irrespective}\:{of}\right. \\ $$$$\left.{the}\:{orientation}\:{of}\:{the}\:{cube}\right)\:{is}\:\mathrm{8}. \\ $$

Answered by mr W last updated on 16/Jun/19

Commented by mr W last updated on 16/Jun/19

say O1234567 is the unit cube.  say ABC is the plane with   A(a,0,0), B(0,b,0) and C(0,0,c)  eqn. of the plane is  (x/a)+(y/b)+(z/c)=1  n^→ =((1/a),(1/b),(1/c))  ∣n∣=(√((1/a^2 )+(1/b^2 )+(1/c^2 )))  for two points P(x_1 ,y_1 ,z_1 ) and Q(x_2 ,y_2 ,z_2 )  PQ^(→) =(Δx,Δy,Δz) with  Δx=x_2 −x_1 , Δy=y_2 −y_1 , Δz=z_2 −z_1   ∣PQ∣=(√((Δx)^2 +(Δy)^2 +(Δz)^2 ))  cos θ=((PQ^(→) .n^(→) )/(∣PQ∣×∣n∣))=((((Δx)/a)+((Δy)/b)+((Δz)/c))/((√((Δx)^2 +(Δy)^2 +(Δz)^2 ))×(√((1/a^2 )+(1/b^2 )+(1/c^2 )))))  length of projection of PQ on plane is  ∣P′Q′∣=∣PQ∣sin θ  ⇒∣P′Q′∣^2 =∣PQ∣^2 sin^2  θ=∣PQ∣^2 (1−cos^2  θ)  ⇒∣P′Q′∣^2 =(Δx)^2 +(Δy)^2 +(Δz)^2 −(((((Δx)/a)+((Δy)/b)+((Δz)/c))^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))  now we apply this for all 12 edges of the  unit cube.  edge O1=32=45=76:  (4 edges)  Δx=1, Δy=0, Δz=0  ∣O′1′∣^2 =1−((1/a^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))    edge 12=O3=74=65:  (4 edges)  Δx=0, Δy=1, Δz=0  ∣1′2′∣^2 =1−((1/b^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))    edge 25=34=O7=15:  (4 edges)  Δx=0, Δy=0, Δz=1  ∣2′5′∣^2 =1−((1/c^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))    sum for all edges:  4(1−((1/a^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))+1−((1/b^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 )))+1−((1/c^2 )/((1/a^2 )+(1/b^2 )+(1/c^2 ))))  =4(3−(((1/a^2 )+(1/b^2 )+(1/c^2 ))/((1/a^2 )+(1/b^2 )+(1/c^2 ))))  =4(3−1)  =8  the result is independent from the  orientation of the plane.

$${say}\:{O}\mathrm{1234567}\:{is}\:{the}\:{unit}\:{cube}. \\ $$$${say}\:{ABC}\:{is}\:{the}\:{plane}\:{with}\: \\ $$$${A}\left({a},\mathrm{0},\mathrm{0}\right),\:{B}\left(\mathrm{0},{b},\mathrm{0}\right)\:{and}\:{C}\left(\mathrm{0},\mathrm{0},{c}\right) \\ $$$${eqn}.\:{of}\:{the}\:{plane}\:{is} \\ $$$$\frac{{x}}{{a}}+\frac{{y}}{{b}}+\frac{{z}}{{c}}=\mathrm{1} \\ $$$$\overset{\rightarrow} {{n}}=\left(\frac{\mathrm{1}}{{a}},\frac{\mathrm{1}}{{b}},\frac{\mathrm{1}}{{c}}\right) \\ $$$$\mid{n}\mid=\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }} \\ $$$${for}\:{two}\:{points}\:{P}\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} ,{z}_{\mathrm{1}} \right)\:{and}\:{Q}\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} ,{z}_{\mathrm{2}} \right) \\ $$$$\overset{\rightarrow} {{PQ}}=\left(\Delta{x},\Delta{y},\Delta{z}\right)\:{with} \\ $$$$\Delta{x}={x}_{\mathrm{2}} −{x}_{\mathrm{1}} ,\:\Delta{y}={y}_{\mathrm{2}} −{y}_{\mathrm{1}} ,\:\Delta{z}={z}_{\mathrm{2}} −{z}_{\mathrm{1}} \\ $$$$\mid{PQ}\mid=\sqrt{\left(\Delta{x}\right)^{\mathrm{2}} +\left(\Delta{y}\right)^{\mathrm{2}} +\left(\Delta{z}\right)^{\mathrm{2}} } \\ $$$$\mathrm{cos}\:\theta=\frac{\overset{\rightarrow} {{PQ}}.\overset{\rightarrow} {{n}}}{\mid{PQ}\mid×\mid{n}\mid}=\frac{\frac{\Delta{x}}{{a}}+\frac{\Delta{y}}{{b}}+\frac{\Delta{z}}{{c}}}{\sqrt{\left(\Delta{x}\right)^{\mathrm{2}} +\left(\Delta{y}\right)^{\mathrm{2}} +\left(\Delta{z}\right)^{\mathrm{2}} }×\sqrt{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}} \\ $$$${length}\:{of}\:{projection}\:{of}\:{PQ}\:{on}\:{plane}\:{is} \\ $$$$\mid{P}'{Q}'\mid=\mid{PQ}\mid\mathrm{sin}\:\theta \\ $$$$\Rightarrow\mid{P}'{Q}'\mid^{\mathrm{2}} =\mid{PQ}\mid^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta=\mid{PQ}\mid^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\theta\right) \\ $$$$\Rightarrow\mid{P}'{Q}'\mid^{\mathrm{2}} =\left(\Delta{x}\right)^{\mathrm{2}} +\left(\Delta{y}\right)^{\mathrm{2}} +\left(\Delta{z}\right)^{\mathrm{2}} −\frac{\left(\frac{\Delta{x}}{{a}}+\frac{\Delta{y}}{{b}}+\frac{\Delta{z}}{{c}}\right)^{\mathrm{2}} }{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }} \\ $$$${now}\:{we}\:{apply}\:{this}\:{for}\:{all}\:\mathrm{12}\:{edges}\:{of}\:{the} \\ $$$${unit}\:{cube}. \\ $$$${edge}\:{O}\mathrm{1}=\mathrm{32}=\mathrm{45}=\mathrm{76}:\:\:\left(\mathrm{4}\:{edges}\right) \\ $$$$\Delta{x}=\mathrm{1},\:\Delta{y}=\mathrm{0},\:\Delta{z}=\mathrm{0} \\ $$$$\mid{O}'\mathrm{1}'\mid^{\mathrm{2}} =\mathrm{1}−\frac{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }} \\ $$$$ \\ $$$${edge}\:\mathrm{12}={O}\mathrm{3}=\mathrm{74}=\mathrm{65}:\:\:\left(\mathrm{4}\:{edges}\right) \\ $$$$\Delta{x}=\mathrm{0},\:\Delta{y}=\mathrm{1},\:\Delta{z}=\mathrm{0} \\ $$$$\mid\mathrm{1}'\mathrm{2}'\mid^{\mathrm{2}} =\mathrm{1}−\frac{\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }} \\ $$$$ \\ $$$${edge}\:\mathrm{25}=\mathrm{34}={O}\mathrm{7}=\mathrm{15}:\:\:\left(\mathrm{4}\:{edges}\right) \\ $$$$\Delta{x}=\mathrm{0},\:\Delta{y}=\mathrm{0},\:\Delta{z}=\mathrm{1} \\ $$$$\mid\mathrm{2}'\mathrm{5}'\mid^{\mathrm{2}} =\mathrm{1}−\frac{\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }} \\ $$$$ \\ $$$${sum}\:{for}\:{all}\:{edges}: \\ $$$$\mathrm{4}\left(\mathrm{1}−\frac{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}+\mathrm{1}−\frac{\frac{\mathrm{1}}{{b}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}+\mathrm{1}−\frac{\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}\right) \\ $$$$=\mathrm{4}\left(\mathrm{3}−\frac{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{c}^{\mathrm{2}} }}\right) \\ $$$$=\mathrm{4}\left(\mathrm{3}−\mathrm{1}\right) \\ $$$$=\mathrm{8} \\ $$$${the}\:{result}\:{is}\:{independent}\:{from}\:{the} \\ $$$${orientation}\:{of}\:{the}\:{plane}. \\ $$

Commented by ajfour last updated on 16/Jun/19

Thanks Sir, very brave!

$${Thanks}\:{Sir},\:{very}\:{brave}! \\ $$

Answered by ajfour last updated on 16/Jun/19

Commented by ajfour last updated on 16/Jun/19

let a^� =cos θi^� +sin θk^�          b^� =cos φcos ψi^� +cos φsin ψj^�                 +sin φk^�       as  c^� = a^� ×b^�       c^� =−cos φsin ψsin θi^� +         (−sin φcos θ+cos φcos ψsin θ)j^�           +cos φsin ψcos θk^�   and as   a^� .b^� =0  ⇒    cos θcos φcos ψ+sin θsin φ=0                                                  ........(i)  let required sum be S.  S=4{cos^2 θ+cos^2 φcos^2 ψ+      cos^2 φsin^2 ψ+cos^2 φsin^2 ψsin^2 θ      +(−sin φcos θ+cos φcos ψsin θ)^2 }  ⇒ (S/4)=cos^2 θ+cos^2 φ+sin^2 θcos^2 φ                +sin^2 φcos^2 θ                 −2sin φcos φsin θcos θcos ψ      Now using (i)   (S/4)=cos^2 θ+cos^2 φ+sin^2 θcos^2 φ            +sin^2 φcos^2 θ+2sin^2 θsin^2 φ      (S/4) = cos^2 θ+cos^2 φ               +sin^2 θ−sin^2 θsin^2 φ               sin^2 φ−sin^2 φsin^2 θ               +2sin^2 θsin^2 φ     ⇒  (S/4) = 2      or   S=8 .

$${let}\:\bar {{a}}=\mathrm{cos}\:\theta\hat {{i}}+\mathrm{sin}\:\theta\hat {{k}} \\ $$$$\:\:\:\:\:\:\:\bar {{b}}=\mathrm{cos}\:\phi\mathrm{cos}\:\psi\hat {{i}}+\mathrm{cos}\:\phi\mathrm{sin}\:\psi\hat {{j}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{sin}\:\phi\hat {{k}} \\ $$$$\:\:\:\:{as}\:\:\bar {{c}}=\:\bar {{a}}×\bar {{b}} \\ $$$$\:\:\:\:\bar {{c}}=−\mathrm{cos}\:\phi\mathrm{sin}\:\psi\mathrm{sin}\:\theta\hat {{i}}+ \\ $$$$\:\:\:\:\:\:\:\left(−\mathrm{sin}\:\phi\mathrm{cos}\:\theta+\mathrm{cos}\:\phi\mathrm{cos}\:\psi\mathrm{sin}\:\theta\right)\hat {{j}} \\ $$$$\:\:\:\:\:\:\:\:+\mathrm{cos}\:\phi\mathrm{sin}\:\psi\mathrm{cos}\:\theta\hat {{k}} \\ $$$${and}\:{as}\:\:\:\bar {{a}}.\bar {{b}}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\mathrm{cos}\:\theta\mathrm{cos}\:\phi\mathrm{cos}\:\psi+\mathrm{sin}\:\theta\mathrm{sin}\:\phi=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:........\left({i}\right) \\ $$$${let}\:{required}\:{sum}\:{be}\:{S}. \\ $$$${S}=\mathrm{4}\left\{\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{cos}\:^{\mathrm{2}} \phi\mathrm{cos}\:^{\mathrm{2}} \psi+\right. \\ $$$$\:\:\:\:\mathrm{cos}\:^{\mathrm{2}} \phi\mathrm{sin}\:^{\mathrm{2}} \psi+\mathrm{cos}\:^{\mathrm{2}} \phi\mathrm{sin}\:^{\mathrm{2}} \psi\mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$$\left.\:\:\:\:+\left(−\mathrm{sin}\:\phi\mathrm{cos}\:\theta+\mathrm{cos}\:\phi\mathrm{cos}\:\psi\mathrm{sin}\:\theta\right)^{\mathrm{2}} \right\} \\ $$$$\Rightarrow\:\frac{{S}}{\mathrm{4}}=\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{cos}\:^{\mathrm{2}} \phi+\mathrm{sin}\:^{\mathrm{2}} \theta\mathrm{cos}\:^{\mathrm{2}} \phi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{sin}\:^{\mathrm{2}} \phi\mathrm{cos}\:^{\mathrm{2}} \theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\mathrm{2sin}\:\phi\mathrm{cos}\:\phi\mathrm{sin}\:\theta\mathrm{cos}\:\theta\mathrm{cos}\:\psi \\ $$$$\:\:\:\:{Now}\:{using}\:\left({i}\right) \\ $$$$\:\frac{{S}}{\mathrm{4}}=\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{cos}\:^{\mathrm{2}} \phi+\mathrm{sin}\:^{\mathrm{2}} \theta\mathrm{cos}\:^{\mathrm{2}} \phi \\ $$$$\:\:\:\:\:\:\:\:\:\:+\mathrm{sin}\:^{\mathrm{2}} \phi\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{2sin}\:^{\mathrm{2}} \theta\mathrm{sin}\:^{\mathrm{2}} \phi \\ $$$$\:\:\:\:\frac{{S}}{\mathrm{4}}\:=\:\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{cos}\:^{\mathrm{2}} \phi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{sin}\:^{\mathrm{2}} \theta−\mathrm{sin}\:^{\mathrm{2}} \theta\mathrm{sin}\:^{\mathrm{2}} \phi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sin}\:^{\mathrm{2}} \phi−\mathrm{sin}\:^{\mathrm{2}} \phi\mathrm{sin}\:^{\mathrm{2}} \theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{2sin}\:^{\mathrm{2}} \theta\mathrm{sin}\:^{\mathrm{2}} \phi\:\:\: \\ $$$$\Rightarrow\:\:\frac{{S}}{\mathrm{4}}\:=\:\mathrm{2}\:\:\:\:\:\:{or}\:\:\:{S}=\mathrm{8}\:. \\ $$$$ \\ $$

Commented by mr W last updated on 16/Jun/19

this is the way to prove i wished but  i could not carry out. thanks sir!

$${this}\:{is}\:{the}\:{way}\:{to}\:{prove}\:{i}\:{wished}\:{but} \\ $$$${i}\:{could}\:{not}\:{carry}\:{out}.\:{thanks}\:{sir}! \\ $$

Commented by ajfour last updated on 16/Jun/19

i′m glad you like it, Sir. It   naturally turned easier than I  expected.

$${i}'{m}\:{glad}\:{you}\:{like}\:{it},\:{Sir}.\:{It}\: \\ $$$${naturally}\:{turned}\:{easier}\:{than}\:{I} \\ $$$${expected}. \\ $$

Commented by mr W last updated on 16/Jun/19

this is my try using your method  without assuming that a^(→)  is in the  plane xz.  a^→ =(a_1 ,a_2 ,a_3 ) with a_1 ^2 +a_2 ^2 +a_3 ^3 =1  b^→ =(b_1 ,b_2 ,b_3 ) with b_1 ^2 +b_2 ^2 +b_3 ^3 =1  a^→ .b^→ =0  ⇒a_1 b_1 +a_2 b_2 +a_3 b_3 =0  ⇒a_1 b_1 +a_2 b_2 =−a_3 b_3     c^→ =a^→ ×b^→ =(a_2 b_3 −a_3 b_2 ,a_1 b_3 −a_3 b_1 ,a_1 b_2 −a_2 b_1 )  (S/4)=a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +c_1 ^2 +c_2 ^2   =a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +(a_2 b_3 −a_3 b_2 )^2 +(a_1 b_3 −a_3 b_1 )^2   =a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +a_2 ^2 b_3 ^2 −2a_2 a_3 b_2 b_3 +a_3 ^2 b_2 ^2 +a_1 ^2 b_3 ^2 −2a_1 a_3 b_1 b_3 +a_3 ^2 b_1 ^2   =a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +(a_1 ^2 +a_2 ^2 )b_3 ^2 −2(a_1 b_1 +a_2 b_2 )a_3 b_3 +a_3 ^2 (b_1 ^2 +b_2 ^2 )  =a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +(a_1 ^2 +a_2 ^2 )b_3 ^2 +2a_3 ^2 b_3 ^2 +a_3 ^2 (b_1 ^2 +b_2 ^2 )  =a_1 ^2 +a_2 ^2 +b_1 ^2 +b_2 ^2 +(a_1 ^2 +a_2 ^2 +a_3 ^2 )b_3 ^2 +a_3 ^2 (b_1 ^2 +b_2 ^2 +b_3 ^2 )  =a_1 ^2 +a_2 ^2 +a_3 ^2 +b_1 ^2 +b_2 ^2 +b_3 ^2   =1+1  =2  ⇒S=2×4=8

$${this}\:{is}\:{my}\:{try}\:{using}\:{your}\:{method} \\ $$$${without}\:{assuming}\:{that}\:\overset{\rightarrow} {{a}}\:{is}\:{in}\:{the} \\ $$$${plane}\:{xz}. \\ $$$$\overset{\rightarrow} {{a}}=\left({a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} \right)\:{with}\:{a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{3}} =\mathrm{1} \\ $$$$\overset{\rightarrow} {{b}}=\left({b}_{\mathrm{1}} ,{b}_{\mathrm{2}} ,{b}_{\mathrm{3}} \right)\:{with}\:{b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{3}} ^{\mathrm{3}} =\mathrm{1} \\ $$$$\overset{\rightarrow} {{a}}.\overset{\rightarrow} {{b}}=\mathrm{0} \\ $$$$\Rightarrow{a}_{\mathrm{1}} {b}_{\mathrm{1}} +{a}_{\mathrm{2}} {b}_{\mathrm{2}} +{a}_{\mathrm{3}} {b}_{\mathrm{3}} =\mathrm{0} \\ $$$$\Rightarrow{a}_{\mathrm{1}} {b}_{\mathrm{1}} +{a}_{\mathrm{2}} {b}_{\mathrm{2}} =−{a}_{\mathrm{3}} {b}_{\mathrm{3}} \\ $$$$ \\ $$$$\overset{\rightarrow} {{c}}=\overset{\rightarrow} {{a}}×\overset{\rightarrow} {{b}}=\left({a}_{\mathrm{2}} {b}_{\mathrm{3}} −{a}_{\mathrm{3}} {b}_{\mathrm{2}} ,{a}_{\mathrm{1}} {b}_{\mathrm{3}} −{a}_{\mathrm{3}} {b}_{\mathrm{1}} ,{a}_{\mathrm{1}} {b}_{\mathrm{2}} −{a}_{\mathrm{2}} {b}_{\mathrm{1}} \right) \\ $$$$\frac{{S}}{\mathrm{4}}={a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +{c}_{\mathrm{1}} ^{\mathrm{2}} +{c}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$$={a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +\left({a}_{\mathrm{2}} {b}_{\mathrm{3}} −{a}_{\mathrm{3}} {b}_{\mathrm{2}} \right)^{\mathrm{2}} +\left({a}_{\mathrm{1}} {b}_{\mathrm{3}} −{a}_{\mathrm{3}} {b}_{\mathrm{1}} \right)^{\mathrm{2}} \\ $$$$={a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} {b}_{\mathrm{3}} ^{\mathrm{2}} −\mathrm{2}{a}_{\mathrm{2}} {a}_{\mathrm{3}} {b}_{\mathrm{2}} {b}_{\mathrm{3}} +{a}_{\mathrm{3}} ^{\mathrm{2}} {b}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{1}} ^{\mathrm{2}} {b}_{\mathrm{3}} ^{\mathrm{2}} −\mathrm{2}{a}_{\mathrm{1}} {a}_{\mathrm{3}} {b}_{\mathrm{1}} {b}_{\mathrm{3}} +{a}_{\mathrm{3}} ^{\mathrm{2}} {b}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$={a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +\left({a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} \right){b}_{\mathrm{3}} ^{\mathrm{2}} −\mathrm{2}\left({a}_{\mathrm{1}} {b}_{\mathrm{1}} +{a}_{\mathrm{2}} {b}_{\mathrm{2}} \right){a}_{\mathrm{3}} {b}_{\mathrm{3}} +{a}_{\mathrm{3}} ^{\mathrm{2}} \left({b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} \right) \\ $$$$={a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +\left({a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} \right){b}_{\mathrm{3}} ^{\mathrm{2}} +\mathrm{2}{a}_{\mathrm{3}} ^{\mathrm{2}} {b}_{\mathrm{3}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} \left({b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} \right) \\ $$$$={a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +\left({a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} \right){b}_{\mathrm{3}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} \left({b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{3}} ^{\mathrm{2}} \right) \\ $$$$={a}_{\mathrm{1}} ^{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} +{a}_{\mathrm{3}} ^{\mathrm{2}} +{b}_{\mathrm{1}} ^{\mathrm{2}} +{b}_{\mathrm{2}} ^{\mathrm{2}} +{b}_{\mathrm{3}} ^{\mathrm{2}} \\ $$$$=\mathrm{1}+\mathrm{1} \\ $$$$=\mathrm{2} \\ $$$$\Rightarrow{S}=\mathrm{2}×\mathrm{4}=\mathrm{8} \\ $$

Commented by ajfour last updated on 16/Jun/19

It must have been possible, this  general way, & its not that lengthy  too, Nice Sir.

$${It}\:{must}\:{have}\:{been}\:{possible},\:{this} \\ $$$${general}\:{way},\:\&\:{its}\:{not}\:{that}\:{lengthy} \\ $$$${too},\:\mathcal{N}{ice}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com