Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62185 by aliesam last updated on 17/Jun/19

∫(dx/(sin3x+sin4x))

$$\int\frac{{dx}}{{sin}\mathrm{3}{x}+{sin}\mathrm{4}{x}} \\ $$

Answered by MJS last updated on 17/Jun/19

∫(dx/(sin 3x +sin 4x))=       [t=(1/(cos x)) → dx=((cos^2  x)/(sin x))]  =−∫(t^3 /((t−1)(t+1)(t^3 +4t^2 −4t−8)))dt=        [((α=−(4/3)(1−(√7)sin ((1/3)arcsin ((√7)/(14)))))),((β=(4/3)(−1+(√7)cos ((π/6)+arcsin ((√7)/(14)))))),((γ=−(4/3)(1+(√7)sin ((π/3)+arcsin ((√7)/(14)))))) ]  =−∫(t^3 /((t−1)(t+1)(t−α)(t−β)(t−γ)))dt=  =(1/(14))∫(dt/(t−1))+(1/2)∫(dt/(t+1))+(γ/7)∫(dt/(t−α))+(α/7)∫(dt/(t−β))+(β/7)∫(dt/(t−γ))=  =(1/(14))ln (t−1) +(1/2)ln (t+1) +(γ/7)ln (t−α) +(α/7)ln (t−β) +(β/7)ln (t−γ)  now put t=(1/(cos x))  ⇒ it′s easy to solve but hard to write out [and  it was not easy to find the constants]

$$\int\frac{{dx}}{\mathrm{sin}\:\mathrm{3}{x}\:+\mathrm{sin}\:\mathrm{4}{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{\mathrm{1}}{\mathrm{cos}\:{x}}\:\rightarrow\:{dx}=\frac{\mathrm{cos}^{\mathrm{2}} \:{x}}{\mathrm{sin}\:{x}}\right] \\ $$$$=−\int\frac{{t}^{\mathrm{3}} }{\left({t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)\left({t}^{\mathrm{3}} +\mathrm{4}{t}^{\mathrm{2}} −\mathrm{4}{t}−\mathrm{8}\right)}{dt}= \\ $$$$\:\:\:\:\:\begin{bmatrix}{\alpha=−\frac{\mathrm{4}}{\mathrm{3}}\left(\mathrm{1}−\sqrt{\mathrm{7}}\mathrm{sin}\:\left(\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arcsin}\:\frac{\sqrt{\mathrm{7}}}{\mathrm{14}}\right)\right)}\\{\beta=\frac{\mathrm{4}}{\mathrm{3}}\left(−\mathrm{1}+\sqrt{\mathrm{7}}\mathrm{cos}\:\left(\frac{\pi}{\mathrm{6}}+\mathrm{arcsin}\:\frac{\sqrt{\mathrm{7}}}{\mathrm{14}}\right)\right)}\\{\gamma=−\frac{\mathrm{4}}{\mathrm{3}}\left(\mathrm{1}+\sqrt{\mathrm{7}}\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\mathrm{arcsin}\:\frac{\sqrt{\mathrm{7}}}{\mathrm{14}}\right)\right)}\end{bmatrix} \\ $$$$=−\int\frac{{t}^{\mathrm{3}} }{\left({t}−\mathrm{1}\right)\left({t}+\mathrm{1}\right)\left({t}−\alpha\right)\left({t}−\beta\right)\left({t}−\gamma\right)}{dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{14}}\int\frac{{dt}}{{t}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}+\mathrm{1}}+\frac{\gamma}{\mathrm{7}}\int\frac{{dt}}{{t}−\alpha}+\frac{\alpha}{\mathrm{7}}\int\frac{{dt}}{{t}−\beta}+\frac{\beta}{\mathrm{7}}\int\frac{{dt}}{{t}−\gamma}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{14}}\mathrm{ln}\:\left({t}−\mathrm{1}\right)\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({t}+\mathrm{1}\right)\:+\frac{\gamma}{\mathrm{7}}\mathrm{ln}\:\left({t}−\alpha\right)\:+\frac{\alpha}{\mathrm{7}}\mathrm{ln}\:\left({t}−\beta\right)\:+\frac{\beta}{\mathrm{7}}\mathrm{ln}\:\left({t}−\gamma\right) \\ $$$$\mathrm{now}\:\mathrm{put}\:{t}=\frac{\mathrm{1}}{\mathrm{cos}\:{x}} \\ $$$$\Rightarrow\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{but}\:\mathrm{hard}\:\mathrm{to}\:\mathrm{write}\:\mathrm{out}\:\left[\mathrm{and}\right. \\ $$$$\left.\mathrm{it}\:\mathrm{was}\:\mathrm{not}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{constants}\right] \\ $$

Commented by aliesam last updated on 17/Jun/19

thank yoy sir   god bless you

$${thank}\:{yoy}\:{sir}\: \\ $$$${god}\:{bless}\:{you} \\ $$

Commented by MJS last updated on 17/Jun/19

I tried some other paths but none worked...

$$\mathrm{I}\:\mathrm{tried}\:\mathrm{some}\:\mathrm{other}\:\mathrm{paths}\:\mathrm{but}\:\mathrm{none}\:\mathrm{worked}... \\ $$

Commented by aliesam last updated on 17/Jun/19

that one is good solution thank you

$${that}\:{one}\:{is}\:{good}\:{solution}\:{thank}\:{you} \\ $$

Commented by malwaan last updated on 18/Jun/19

GREAT   SIR MJS  thank you so much

$${GREAT}\:\:\:{SIR}\:{MJS} \\ $$$${thank}\:{you}\:{so}\:{much} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com