Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62196 by maxmathsup by imad last updated on 17/Jun/19

calculate ∫_0 ^∞  ((ln(2+e^(−t^2 ) ))/(t^2  +3))dt

calculate0ln(2+et2)t2+3dt

Commented by mathmax by abdo last updated on 21/Jun/19

let I =∫_0 ^∞   ((ln(2+e^(−t^2 ) ))/(t^2  +3)) dt ⇒2I =∫_(−∞) ^(+∞) ((ln(2+e^(−t^2 ) ))/(t^2  +3))   let consider the complex  function w(z) =((ln(2+e^(−z^2 ) ))/(z^2  +3))    ⇒w(z) =((ln(2+e^(−z^2 ) ))/((z−i(√3))(z+i(√3))))  residus theorem give ∫_(−∞) ^(+∞)  w(z)dz =2iπ Res(w,i(√3))  Res(w,i(√3)) =lim_(z→i(√3))    (z−i(√3))w(z) =((ln(2+e^(−(i(√3))^2 ) ))/(2i(√3))) =((ln(2+e^3 ))/(2i(√3))) ⇒  ∫_(−∞) ^(+∞)  w(z)dz =2iπ ((ln(2+e^3 ))/(2i(√3))) =π((ln(2+e^3 ))/(√3)) ⇒I =(π/(2(√3)))ln(2+e^3 ) .

letI=0ln(2+et2)t2+3dt2I=+ln(2+et2)t2+3letconsiderthecomplexfunctionw(z)=ln(2+ez2)z2+3w(z)=ln(2+ez2)(zi3)(z+i3)residustheoremgive+w(z)dz=2iπRes(w,i3)Res(w,i3)=limzi3(zi3)w(z)=ln(2+e(i3)2)2i3=ln(2+e3)2i3+w(z)dz=2iπln(2+e3)2i3=πln(2+e3)3I=π23ln(2+e3).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com